15-441 Computer Networks

Lecture 6

Link-Layer (2)

Dave Eckhardt

1

Roadmap

Last time

What's a link layer?

Today

Ethernet

Some things which aren't Ethernet

Next time

Ethernet empires

What's a switch?

Outline 9

Ethernet

Conceptual history

Carrier sense, Collision detection

Ethernet history, operation (CSMA/CD)

Packet size

Ethernet evolution

Some things which aren't Ethernet

Token Bus, Token Ring, FDDI, Frame Relay

> 802.11

Approach

A word on approach

4

- We will discuss many "obsolete" technologies
- This can be a good way to grasp the underlying ideas
 - ...which keep turning up in different contexts
 - A good arrangement of ideas is an easier advance than a genuinely new thing

Reminder: Medium Access Control (MAC)

- Share a communication medium among multiple
- Arbitrate between connected hosts
- Goals:
 - High resource utilization
 - Avoid starvation
 - Simplicity (non-decentralized algorithms)

Approaches

- Taking turns, random access, really-random access (SS)
- Random access = allow collisions
 - Manage & recover from them

Ethernet in Context

ALOHA

- When you're ready, transmit
- Detect collisions by waiting (a long time)
- Recover from collision by trying again
 - ...after a random delay...
 - » Too short, entire network collapses
 - » Too long, every user gets bored

Things to try

- Slotted ALOHA reduce collisions (some, not enough)
- Listen before transmit
- True collision detection

Listen Before Transmit

Basic idea

- Detect, avoid collisions <u>before they happen</u>
- Listen before transmit (officical name: "Carrier Sense")
 - Don't start while anybody else is already going

Great idea! Why didn't ALOHA do it?

"Hidden terminal problem"

Hidden Terminal Problem

- A and B are deaf to each other
 - Can't sense each other's carrier
 - Carrier sense "needs help" in this kind of environment
- But CS can work really well in an enclosed environment (wire)

Collision Detection

Is Carrier sense enough?

- Sometimes there is a "race condition"
 - Two stations listen at the same time
 - Both hear nothing, start to transmit
 - Result: collision
 - » Could last "for a while"
 - » Can we detect it while it's happening?

Collision Detection

- Listen while you transmit
- If your signal is "messed up", assume it's due to a collision
- Great idea! Why didn't ALOHA do it?

Collision Detection

Collision detection difficult for radios

- "Inverse-square law" relates power to distance
 - At A, A's transmission drowns out B's
 - At B, B's transmission drowns out A's
 - Neither can hear each other, C hears mixture (collision)
- Many radios disable receiver while transmitting
 - Huge power of local transmitter may damage receiver
- Collision detection <u>can</u> be done inside a wire

Original Xerox PARC Ethernet Design

www.ethermanage.com/ethernet

Original Xerox PARC Ethernet Design

Carrier-sense multiple access with collision detection (CSMA/CD).

- MA = multiple access
- CS = carrier sense
- CD = collision detection

PARC Ethernet parameters

3 Mb/s (to match Xerox Alto workstation RAM throughput)

256 stations (1-byte destination, source addresses)

1 kilometer of cable

802.3 Ethernet

DEC/Intel/Xerox ("DIX") Ethernet standardized by IEEE

- Throughput 3 Mb/s \Rightarrow 10 Mb/s
- Station addresses 1 byte \Rightarrow 6 bytes

Growth over the years

- Hubs, bridges, switches
- 100Mbps, 1Gbps, 10Gbps
- Thin coax, twisted pair, fiber, wireless

CSMA/CD Algorithm

Listen for carrier

If carrier sensed, wait until carrier ends.

Sending would force a collision and waste time

Send packet while listening for collision.

If no collision detected by end, consider packet delivered.

Otherwise

Abort immediately

- Transmit "jam signal" (32 bits) to fill cable with errors

Perform "exponential back-off" to try packet again.

Exponential Back-off

Basic idea

Two or more stations want the medium, want to take turns

- Idea: each station rolls an N-sided die
 - » Wait that many packet times, try transmitting then
- Issues: what is N?
 - » How many stations want the medium?

Exponential Back-off

Exponential Back-off

First collision: delay 0 or 1 periods (512 bits)

- Each station chooses with 50/50% probability
- Result is 50% probability of resolving the conflict
- Appropriate if two stations contending for medium

Second collision: delay 0...3 periods

- Will work well if "roughly 4" stations contending
- Third collision: delay 0...7 times

Ten collisions?

- Give up, tell device driver "transmission failed"

Collision Detection

Collision Detection: Implications

Goal: every node detects collision as it's happening

Any node can be sender

So: need short wires, or long packets.

Or a combination of both

Can calculate length/distance based on transmission rate and propagation speed.

Messy: propagation speed is mediumdependent, low-level protocol details,

Minimum packet size is 64 bytes

Cable length ~256 bit times

Example: maximum coax cable length is 2.5 km

Minimum Packet Size

- Why put a minimum packet size?
- Give a host enough time to detect collisions
- In Ethernet, minimum packet size = 64 bytes (two 6-byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes
- What is the relationship between minimum packet size and the length of the LAN?

Minimum Packet Size (more)

Ethernet Frame Format

Preamble marks the beginning of the frame.

Also provides clock synchronization

Source and destination are 48 bit IEEE MAC addresses.

- Flat address space
- > Hardwired into the network interface
- Type field (DIX Ethernet) is a demultiplexing field.
 - Which network (layer 3) protocol should receive this packet?
 - > 802.3 uses field as length instead
- CRC for error checking.

Ethernet Technologies: 10Base2

10: 10Mbps; 2: under 200 meters max cable length (185 m)

Thin coaxial cable in a bus topology

Repeaters used to connect multiple segments

Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

Compatible Physical Layers

10Base2 standard

- Thin coax, point-topoint "T" connectors
- Bus topology
- 10-BaseT: twisted pair
 - Hub acts as a concentrator
 - 3 layers, same protocol!
 - Key: electrical connectivity between all nodes
 - Deployment is different

10BaseT and 100BaseT

10/100 Mbps rate; later called "Fast Ethernet"

- T stands for Twisted Pair
- Hub to which nodes are connected by twisted pair, thus "star topology"

10BaseT and 100BaseT (more)

- Max distance from node to Hub is 100 meters
- Hub can disconnect "jabbering" adapter
- Hub can gather monitoring information, statistics for display to LAN administrators

Hubs still preserve one collision domain

- Every packet is forwarded to all hosts
- Use <u>bridges</u> to address this problem
 - Bridges forward a packet only to the port leading to the destination

802.3u Fast Ethernet

- Apply original CSMA/CD medium access protocol at 100Mbps
- Must change either minimum frame or maximum diameter: change diameter
- Requires
 - 2 UTP5 pairs (4B5B) or
 - 4 UTP3 pairs (8B6T) or
 - 1 fiber pair
- No more "shared wire" connectivity.
 - Hubs and switches only

4B/5B encoding

802.3z Gigabit Ethernet

Same frame format and size as Ethernet.

This is what makes it Ethernet

Two cases

- Shared (broadcast) CSMA/CD not frequently used
- Point-to-point links two stations
 - "Full-duplex": "both sides transmit simultaneously"
 - Added flow control to deal with congestion
- Choice of a range of fiber and copper transmission media.
- "Jumbo frames" (larger than 1500 bytes) allow higher efficiency

Traditional IEEE 802 Networks: MAC in the LAN and MAN

"Ethernet" often considered same as IEEE 802.3.

Not quite identical

The IEEE 802.* set of standards defines a common framing and addressing format for LAN protocols.

Simplifies interoperability

Addresses are 48 bit strings, with no structure

802.3 (Ethernet)

802.5 (Token ring)

802.X (Token bus)

- 802.6 (Distributed queue dual bus)
- 802.11 (Wireless)

LAN Properties

Exploit physical proximity

- Typically there is a limitation on the physical distance between the nodes
- E.g., to collect collisions in a contention based network
- E.g., to limit the overhead introduced by token passing or slot reservations

Rely on single administrative control and some level of trust

- Broadcasting packets to everybody and hoping everybody (other than the receiver) will ignore the packet
- Token passing protocols assume everybody plays by the rules

Why Ethernet?

Easy to manage

- You plug in the host and it basically works
- No configuration at the datalink layer

Broadcast-based

- In part explains the easy management
- Some of the LAN protocols (e.g. ARP) rely on broadcast
 - Networking would be harder without ARP
- Not having "free" broadcast adds complexity to a LAN
 - Example: ATM

Drawbacks.

Broadcast-based: limits throughput since each packet consumes the throughput of the entire network

Distance

Outline of the second s

Ethernet

Conceptual history

Carrier sense, Collision detection

Ethernet history, operation (CSMA/CD)

Packet size

Ethernet evolution

Some things which aren't Ethernet

- Token Ring, FDDI, Token Bus
- Wireless, including 802.11

Token Ring

IBM Token Ring

- Competed with 10 megabit Ethernet
- 4 megabit transfer rate
 - Lots of heated arguments about how 4 > 10
- Logical ring
 - Each station has left neighbor, right neighbor
 - Distributed elections, token passing, whee!
- Physical star
 - Each station actually connected to a box in a closet
 - If you stopped making sense you were cut out of the ring

FDDI

Fiber Distributed Data Interface

- "Token ring grown up"
- >100 Mbit/s
- Nodes connected by fiber
 - Multi-mode fiber driven by LED
 - Single-mode fiber driven by laser (long distance)
- Up to 500 nodes in ring, total fiber length 200 km
- Organized as <u>dual ring</u>

FDDI – Fault Recovery Station Station Station Station Station Station Station Station Hui Zhang, Dave Eckhardt

Token Bus

Basic idea

Ethernet is cool

...run one cable throughout building

- ...popular technology, commodity, cheap

Factory automation people worry about frame delay

- ...must bound delay from sensor to controller to robot

Token ring is cool - firm bound on transmission delay

Virtual network

Run token-ring protocol on Ethernet frames

- No collisions, gain delay bound (though generally worse)

May be a nested lie: bus atop bridge atop star!

NCR WaveLAN

Basic idea

- Ethernet is cool
 - ... "wireless Ethernet" would be cooler
 - ...re-use addresses, bridging protocols, ...

Recall: radio collision detection is hard

- Undetected collisions waste a lot of time
- Hack: collision <u>inference</u>
 - Is medium busy when you want to transmit?
 - » Assume true of other stations too
 - » Assume you will all collide when the medium is free
 - » "Back off" pro-actively

Wireless (802.11)

- Designed for use in limited geographical area (i.e., couple of hundreds of meters)
- Designed for three physical media (run at either 1Mbps or 2 Mbps)
 - Two based on spread spectrum radio
 - One based on diffused infrared

Collision Avoidance: The Problems

Reachability is not transitive: if A can reach B, and B can reach C, it doesn't necessary mean that A can reach C

Hidden nodes: A and C send a packet to B; neither A nor C will detect the collision!

Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)!

Multiple Access with Collision Avoidance (MACA)

Before every data transmission

Sender sends a Request to Send (RTS) frame containing the length of the transmission

Receiver respond with a Clear to Send (CTS) frame

Sender sends data

Receiver sends an ACK; now another sender can send data

When sender doesn't get a CTS back, it assumes collision

Summary

MAC Problem: arbitrate between multiple hosts sharing a common communication media

Wired solution: Ethernet (use CSMA/CD protocol)

Detect collisions

Backoff exponentially on collision

Alternate wired "solution"

If you have have enough wires, "full duplex" link (2 links)

Wireless solution: 802.11

Use MACA protocol

Cannot detect collisions; try to avoid them

Distribution system & frame format in discussion sections