15-441 Spring 06
Project 2: Network Layer

Network Layer

 Gets data from host A to host B

— Global addressing uniquely identifies A and B

— Data finds its way to host B, directly or
indirectly

— Don’t care how how they are connected, as
long as they are.

* Where is host B, and how to get there?

Forwarding

* Finds host B by looking up in a forwarding table.

Dest IF
1.1.21 1
1.1.3.1 2
1.1.1.1
1 2 Dest IF
1.1.11 1
] : 1.1.2.1 1
1.1.2.1 1.1.3.1
Dest IF
1.1.1.1 1 Who makes these
forwarding tables?
1.1.3.1 1

Routing

* Finds the paths to host B

* Fills in forwarding tables with the “best”
path

e How?

— Static
* Manually set it (part 1)

— Dynamic
« Use a routing algorithm (part 2)

Your Mission

* Implement the network layer for a
simulated operating system kernel
— IPv4 (RFC 791)

— Relay bytes between transport and physical
layers

— Forward packets between hosts
— Not required: fragmentation and reassembly

* Implement a simple routing daemon
— Using OSPF protocol

IPv4

* You must handle
— Checksum
— Header length
— Packet length
— Source and destination address
— Protocol number
— TTL
— [P version number

* Your implementation need not handle
— Fragmentation
— Options
— Multicast/broadcast
— ToS

When You Are All Done

(oued

Socket
Transport
Network

Link
Physical

Socket)
Transport
Network
Link
Physical

(" Socket)
Transport

Network
Link

Physical

Simulator: Logical View

Socket)
Transport

Network
Link

Socket
Transport
Network

Link
Physical

Physical

[Socket)
Transport

Network
Link

Physical

Simulator: Implementation

Legend (Shapes)

O O Unix Process

<«— Unix IPC

Simulator
Kernel

Simulator
Kernel

Simulator
Kernel

Simulator: Full Picture

Legend (Shapes)

O O Unix Process

<«— Unix IPC

[

Socket
Transport

Network
Link

Physical”
<

Socket
Transport
Network
Link
Physical

Legend (Colors)

User
Kernel

Network
Stack

——

Socket
Transport

Network
Link

F}Physical

N

-/

10

Sending a Packet

[Transport } For_l_/\;irlimg
J A;OUTE
ip_output()
Add IP header [IP_NOROUTE
[
[
4 ifp->if _start() A Interface
List
Link

Receiving a Packet

[Transport J
udp receive()
Strip IP header

Yes! /

Forwarding
Table

Interface
List

ip_forward()
For me? >\< % Modify IP header
ip_input() O... (TTL, checksum)
[Link ifp->if_start() J

12

pbuf

» Linked list of fixed-size (512 byte) buffers

912 > 512 512 —* 512
+ Why?
— Dynamic, variable-sized memory allocation is
expensive

« Takes time, function of size of heap
« Wastes space due to fragmentation

13

Inside a pbuf

p_dat

p_next

» Next pbuf of this packet

p_nextpkt

» Next packet in list of packets

p_data

First byte of data in this pbuf

p_len

p_type

p_flags

User-defined

There’s room to

/ grow!

Length of data in this pbuf

-

14

pbuf Chain

sizeof(struct pbuf) p_len is the length of a pbuf

p_pktlen() is total length

of data in the packet
™

Packet 1 —

p_nextpkt

p_next
Packet 2 g g

IP Interface

 When ip_input() is called...
— p_data points to beginning of IP header
— Strip off IP header before passing onto transport
layer
 When ip_output() is called...
— p_data points be beginning of IP payload
— Prepend an IP header before handing to link layer

— Can assume there’'s enough room to prepend a IP
header

» Should not need to allocate more pbufs

« Helper functions in pbuf.h
— p_prepend, p_strip

16

Connecting to the Simulator

e #include <project2/include/Socket.h>

« Use Socket-API functions with first letter capitalized
— Socket (), Bind (), Connect() ..

« Make sure to Close()
— Simulator isn’t an operating system, it doesn’t clean up after you

17

Testing Your Network Layer

 Use fdconfig to set up static routes
* Try UDP applications

—unreliable-server,
unreliable-client

— Your P1 TFTP server (single client)

18

Simulator Internals

* Multithreaded implementation

— System call interface
« User processes must register with simulator
* One thread to handle registration requests
* One thread per process to handle system calls

— Network devices
* One thread per network device
« Wakes up when packet arrives

* What does this mean for you?
— Your code will be executed by multiple threads..
— Your code must be re-entrant!

19

Concurrency Reminder

* What you think
ticket = next ticket++; /* 0 = 1 */

* What really happens (in general)
ticket = temp = next ticket; /* 0 */
++temp; /* invisible to other threads */

next ticket = temp; /* 1 is visible */

20

Murphy's Law (Of Threading)

* The world may arbitrarily interleave execution

— Multiprocessor
- N threads executing instructions af the same time
- Of course effects are interleaved!

— Uniprocessor
« Only one thread running at a time...
- But N threads runnable, timer counting down toward zero...

* The world will choose the most painful
interleaving
— “Once chance in a million” happens every minute

21

Your Hope

TO T1

tkt = tmp =n tkt; |0

++tmp; 1

n tkt = tmp; 1
tkt = tmp =n tkt; |1
++tmp; 2
n tkt = tmp 2

Final Value 1 2

22

Your Bad Luck

TO T1
tkt = tmp =n tkt; |0
tkt = tmp =n tkt;
++tmp; 1
++tmp;
n tkt = tmp; 1
n tkt = tmp
Final Value 1

Two threads have the same “ticket” !

23

What To Do

* What you think
MUTEX LOCK(m) ;
ticket = next ticket++;
MUTEX UNLOCK(m) ;
 Now no other thread's execution of the

“critical section” can be interleaved with
yours

24

|P Dataflow Revisited

[Transport J
Two threads of execution!
Problem! Link layer
can only send out
one packet at a time. ip_output()

ip_input() ————p ip_forward()
A

v

Link ifp->if_start() J

25

One ata Time

* Only one thread can send through a particular
device at a time

— Otherwise the device will fail and cause kernel to
panic.

* Need mutual exclusion

— Use a mutex (pthread _mutex_t) for each device
— Declared in if.h, Mutex wrappers in systm.h

MUTEX LOCK (&ifp->if mutex);

Critical section! Mutex
. ensures that only one
thread can enter at a time.

ifp->start (ippkt) ;

MUTEX UNLOCK (&ifp->if mutex);

26

IP Dataflow Revisited (again)

Y

Socket Socket

> <> $

Transport Transport
& AN J

\ /I' wo threads can call ip_output()
ip_output() concurrently, that should work!
/ %It does|
|fp->|f start() |fp->|f start()

27

Many at a Time

* More than one thread could invoke an IP
layer function at the same time

— Each invocation has to be independent of one

another

— Each invocation needs to have its own state

« Stack variables are independent, global variables
are shared

— Shared state needs to be protected

28

Debugging Multiple Threads

* Using gdb
—info thread lists all running threads
- thread n switches to a specific thread
— bt to get stack trace for the current thread

— Look for the function thread name in stack
trace, name of thread is in the argument

* “link n:i to k:j” device thread for interface i on node
n to interface j on node k

« “user_pid” system call handling thread for user
process pid.

29

