15-410

“..Goals: Time Travel, Parallel Universes...”

Source Control
Feb. 16, 2006

Dave Eckhardt
Zach Anderson (15-412, S '03)

-1 - 1L10d_PRCS 15-441, S'06

Outline

Motivation

Repository vs. Working Directory
Conflicts and Merging

Branching

PRCS - Project Revision Control System

15-441, S'06

Goals

Working together should be easy

Time travel
- Useful for challenging patents

- Very useful for reverting from a
sleepless hack session

Parallel universes
- Experimental universes
- Product-support universes

-3- 15-441, S'06

Goal: Shared Workspace

Reduce development latency via parallelism
- [But: Brooks, Mythical Man-Month]

Alice

awesome.C

Bob

Charlie Devon

15-441, S'06

Goal: Time Travel

Retrieving old versions should be easy.

Once Upon A Tine...
Alice: What happened to the code? It doesn’t work.
Charlie: Oh, | made some changes. My code is 1337!

Alice: Rawr! | want the code from last Tuesday!

_5- 15-441, S'06

Goal: Parallel Universes

Safe process for implementing new features.
- Develop bell in one universe
- Develop whistle in another
- Don't inflict B's core dumps on W

- Eventually produce bell-and-whistle
release

_6- 15-441, S'06

How?

Keep a global repository for the project.

_7 15-441, S'06

The Repository

Version
- Contents of some files at a particular point in
time
- aka “Snapshot”

Project
- A “sequence” of versions
* (not really)

Repository
- Directory where projects are stored

- 15-441, S'06

The Repository

Stored in group-accessible location
- Old way: file system
- Modern way: “repository server”
Versions in repository visible group-wide
- Whoever has read access
- “Commit access” often separate

9. 15-441, S'06

How?

Keep a global repository for the project.
Each user keeps a working directory.

- 10 -

15-441, S'06

The Working Directory

Many names (“sandbox™)

Where revisions happen

Typically belongs to one user
Versions are checked out to here

New versions are checked in from here

-11 -

15-441, S'06

How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

_12-

15-441, S'06

Checking Out. Checking In.

Checking out
- A version is copied from the repository
* Typically “Check out the latest”
* Or: “Revision 3.1.4”, “Yesterday noon”

Work

- Edit, add, remove, rename files
Checking in
- Working directory = repository atomically

- Result: new version
-13 - 15-441, S'06

Checking Out. Checking In.

Repository Working Directory

@)
@)

-m’-

- 14 - 15-441, S'06

Checking Out. Checking In.

Repository Working Directory

(@)

o

| mutate

- 15 - 15-441, S'06

Checking Out. Checking In.

Repository Working Directory

(@)

o

-‘W-

@)
@)
©)

- 16 - 15-441, S'06

How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

Mechanisms for merging

_17 -

15-441, S'06

Conflicts and Merging

Two people check out.
- Both modify foo.c

Each wants to check in a new version.
- Whose is the correct new version?

- 18 - 15-441, S'06

Conflicts and Merging

Conflict
- Independent changes which “overlap”

- Textual overlap detected by revision
control

- Semantic conflict cannot be

Merge displays conflicting updates per file

Pick which code goes into the new version
- A, B, NOTA

1o Story now, real-life example later

15-441, S'06

Alice Begins Work

Alice Repository Bob

B
-

- 20 - 15-441, S'06

Bob Arrives, Checks Out

Alice Repository Bob

e —
-

-21 - 15-441, S'06

Alice Commits, Bob Has Coffee

Alice Repository Bob

-
i

-22 - 15-441, S'06

Bob Fixes Something Too
Alice Repository

-23 - 15-441, S'06

Wrong Outcome

Alice Repository

_24 -

Bob

-
e

15-441, S'06

“Arguably Less Wrong”

Alice Repository

-H
i

- 25 - 15-441, S'06

Merge, Bob, Merge!

Alice Repository Bob

_ 96 -

15-441, S'06

Committing Genuine Progress
Alice Repository

- 27 - 15-441, S'06

How?

Keep a global repository for the project.
Each user keeps a working directory.

Concepts of checking out, and checking in

Mechanisms for merging
Mechanisms for branching

_08 -

15-441, S'06

Branching

A branch is a sequence of versions
- (not really...)

Changes on one branch don't affect others
Project may contain many branches
Why branch?

- Implement a new “major” feature

- Begin an independent sequence of
development

- 29 - 15-441, S'06

Branching

@)
@)
o

v0.3 branch vl.1l

v0.37 v1.42

oS |
o N | merge

~ o |

~av

v1.43

-30 -

The actual branching
and merging take
place 1n a particular
user's working
directory, but this 1s
what such a sequence
would look like to
the repository.

15-441, S'06

Branch Life Cycle

Successful development branch
- Merged back to parent
- No further versions

Unsuccessful development branch
- Some changes pulled out?
- No further versions

Maintenance branch
- “End of Life”’: No further versions
- 32

15-441, S'06

Recommendation for 15-441

You can use CVS if you're used to it
- Also: SVN, arch, ...

PRCS, Project Revision Control System
- Small “conceptual throw weight”
- Easy to use, state is visible (single text file)
- No bells & whistles

Setting to learn revision control concepis
- Quick start when joining research project/job
* (They will probably not be using PRCS)

- 36 - 15-441, S'06

Getting Started

Add programs to your path (.bashrc):

S export
PATH=/afs/cs.cmu.edu/academic/class/15410-
s06/bin: SPATH

Set environment variables (also .bashrc):

S export
PRCS REPOSITORY=/afs/cs.cmu.edu/academic/c
lass/15441-s06-users/group—-99/REPOSITORY

$ export PRCS_LOGQUERY=1

- 37 - 15-441, S'06

Creating A New Project

In a working directory:
$ prcs checkout P

- P is the name of the project

Creates a file: P.prj

_38 -

15-441, S'06

The Project File

.. —%- pros —%- Description of project.
(Created-By-Prcs-Version 1 3 0

(Project-Description "")

(Project-Version P 0 0)

(Parent-Version —*— —*— —%-—) Make notes about

(Version-Log "Empty project.")
(New-Version-Log "") \ changes before

(Checkin-Time "Wed, 15 Jan 2003 21:38:47 -0500") Checking 1n a hew
version

(Checkin-Login zra)
(Populate—-Ignore ())

(Project—-Keywords)
(Files
;; This is a comment. Fill in files here.

;; For example: (prcs/checkout.cc ())
/ “k\\\\\\\\~

(Merge—-Parents)
(New—Merge—Parents)

-39

List of files

15-441, S'06

Using the Project File

Adding Files
$ prcs populate P filel file2 .. fileN

- To add every file in a directory
$ prcs populate P

* Rarely what you want — expensive to source-control core
files!

Removing, renaming files
- See http://www.cs.cmu.edu/~410/prcs-cmu

_40 - 15-441, S'06

Checking In

Checking in
$ prcs checkin P

- Check-in will fail if there are conflicts.
- Hey, we forgot to talk about conflicts!

-41 - 15-441, S'06

Conflicts and Merging

Suppose this file is in the repository for
project P:

#include <stdlib.h>
#include <stdio.h>

int main (void)

{
printf ("Hello World!\n");
return O;

_4D -

15-441, S'06

Conflicts and Merging

Suppose Alice and Charlie check out this
version, and make changes:

Alice's Version

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
/* prints "Hello World"
to stdout */
printf ("Hello World!\n");
return SUPER;

_43 -

Charlie's Version

#include <stdlib.h>
#include <stdio.h>

int main (void)
{
/* this, like, says
hello, and stuff */
printf ("Hello Hercules!\n");
return 42;

}

15-441, S'06

Conflicts and Merging

Suppose Alice checks in first.

$ prcs checkin

Now Charlie must perform a merge
$ prcs checkin = will fail
$ prcs merge

* Default merge option performs a CVS-like
merge.

$ prcs checkin = should work now

-44 - 15-441, S'06

Merge Mutilation

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main (void)

{

<<< 0.2 (w) /hello.c Wed, 19 Feb 2003 21:26:36 -0500 zra (P/0_hello.c 1.2 644)

/* this, like, says hello, and stuff */
printf ("Hello Hercules!");
return 42;

/* prints "Hello World" to stdout */
printf ("Hello World!");
return SUPER;

>>> 0.3/hello.c Wed, 19 Feb 2003 21:36:53 -0500 zra (P/0_hello.c 1.3 644)

15-441, S'06

Conflicts and Merging

Pick/create the desired version
- Check that into the repository.

- 46 - 15-441, S'06

Branching

To create the first version of a new branch:

$ prcs checkin -rExperimental VM
Kern.prj

To merge with branch X version 37:

$ prcs merge -rX.37 Kern.prj

_47 - 15-441, S'06

Information

To get a version summary about P:

$ prcs info P

- with version logs:
$ prcs info -1 P

_48 -

15-441, S'06

_ 49 -

CVS

Features
- What your roommate probably uses
- Much more popular than PRCS!

- Commit: atomic if you are careful
* Must commit in the top-level directory

- Named snhapshots: if you “cvs tag” often
- Branching: works if you are careful
— Core operations require care & expertise!!!

15-441, S'06

SVN - “SubVersion”

Features
- Cool name
- Somebody on your hall probably uses it
- Much more popular than PRCS!

- Probably less local hand-holding than CVS

_50-

15-441, S'06

RCS — Revision Control System

Features

- The data structures CVS & PRCS use
internally

- Very reliable (in wide use since 1980's)

— Core orientation is single directories, not
trees

- Lock-based - “no merge conflicts!”

-51 - 15-441, S'06

RCS - Storage

Each file stored two places
- “working file” - foo.c
- RCS file - foo.c,v
* Or, more conveniently, RCS/foo.c,v
- If you conveniently “mkdir RCS”

RCS file contains multiple versions of working file

- Format is basically diffs against current
version

-52 - 15-441, S'06

Creating RCS Files

After making ‘RCS’ subdirectory...

Initialize RCS for your file mysource. c (assume you
have already created it) by checking itin (ci)

[geocffl@ux3 ~/tmp]$ ci mysource.c

RCS/mysource.c,v <—— mysource.cC

enter description, terminated with single '.' or end of file:

NOTE: This is NOT the log message!

>> This source file contains a simple algorithm to solve the Halting
Problem.

>>

initial revision: 1.1

done

Result: version 1.1

-53- 15-441, S'06

Checking out files

In previous example, after ci, mysource.c is gone!
To retrieve mysource. c, use co command (“check out”)

[geof£1Qux3 ~/tmp]l$ 1ls -1

total 2

drwxr—-xr—-x 2 geoffl users 2048 Jan 19 15:39 RCS
[geocffl@ux3 ~/tmp]$ co mysource.c

RCS/mysource.c,v —--> mysource.cC

revision 1.1

done

[geof£1Qux3 ~/tmp]l$ 1ls -1

total 3

SRS B 1 geoffl users 137 Jan 19 15:39 mysource.c
drwxr—-xr—-x 2 geoffl users 2048 Jan 19 15:39 RCS

Note: permissions don't let us change mysource.c
— Our copy is read-only—*“this is a feature, not a bug”

-54 - 15-441, S'06

Locking files

To change mysource. c, must acquire lock
- co -1 mysource.c does checkout with lock

- res -1 mysource.c acquires lock after the fact

Obtaining lock sets file to read/write

- Plan: edit the file quickly, check it in
* ci -u mysource.c means “check in and unlock”

- Not the plan
* Lock the file, go home and go to sleep
* Now your partner can't lock the file

_55-

15-441, S'06

Locking files

To change mysource. c, must acquire lock
- co -1 mysource.c does checkout with lock

- res -1 mysource.c acquires lock after the fact

Obtaining lock sets file to read/write

- Plan: edit the file quickly, check it in
* ci -u mysource.c means “check in and unlock”

- Not the plan
* Lock the file, go home and go to sleep
* Now your partner can't lock the file

@ Guess why CVS was invented?

_ 56 -

15-441, S'06

Locking files

To change mysource. c, must acquire lock
- co -1 mysource.c does checkout with lock

- res -1 mysource.c acquires lock after the fact

Obtaining lock sets file to read/write

- Plan: edit the file quickly, check it in
* ci -u mysource.c means “check in and unlock”

- Not the plan
* Lock the file, go home and go to sleep
* Now your partner can't lock the file

@ Guess why CVS was invented?
* Solution: break your partner's lock
- Now your partner gets to merge in your changes
- (Luckily, RCS doesn't have merge conflicts like CVS, PRCS)

-57 - 15-441, S'06

Versions

Each version of the file has a version number

- “release.revision” format —
* 4.2 is release 4, revision 2

- Doesn’t necessarily correspond to anything
about real world version humbers

- By default, each ci of a changed file increments
revision number by 1
Can use -r flag to specify version numbers
- Use this with co to retrieve old versions

- Use this with ci to name new versions

* ci -rl.8 mysource.c Will check in mysource.c as 1.8
* ci -r2 mysource.c Will check in mysource.c as 2.1

- 58 - 15-441, S'06

Info On “Alternatives”

More information about CVS (my personal choice)
- http://www.nongnu.org/cvs/
- http://www.tortoisecvs.org/ for Windows users

RCS

- Look atman rcs,man recsintro

- Official RCS homepage:
* http://www.cs.purdue.edu/homes/trinkle/RCS/

— Other useful features
e ci -1:check-in a version but keep the file and the lock
* ci —u:check-in a version but keep a read-only version of file
* rcsdiff: display differences between versions
* rcsmerge: merge changes in different versions of a file

- 59 - 15-441, S'06

