
15-441, S'06- 1 -

Source Control
Feb. 16, 2006

Dave EckhardtDave Eckhardt

Zach Anderson (15-412, S '03)Zach Anderson (15-412, S '03)

L10d_PRCS

15-410
“...Goals: Time Travel, Parallel Universes...”

15-441, S'06- 2 -

Outline

MotivationMotivation

Repository vs. Working DirectoryRepository vs. Working Directory

Conflicts and MergingConflicts and Merging

BranchingBranching

PRCS – Project Revision Control SystemPRCS – Project Revision Control System

15-441, S'06- 3 -

Goals

Working together should be easyWorking together should be easy

Time travelTime travel

� Useful for challenging patents

� Very useful for reverting from a
sleepless hack session

Parallel universesParallel universes

� Experimental universes

� Product-support universes

15-441, S'06- 4 -

Goal: Shared Workspace

Reduce development latency via parallelismReduce development latency via parallelism

� [But: Brooks, Mythical Man-Month]

Alice

Charlie

Bob

Devon

awesome.c

15-441, S'06- 5 -

Goal: Time Travel

Retrieving old versions should be easy.Retrieving old versions should be easy.

Onc e Upon A Ti me …

Alice: What happened to the code? It doesn’t work.

Charlie: Oh, I made some changes. My code is 1337!

Alice: Rawr! I want the code from last Tuesday!

15-441, S'06- 6 -

Goal: Parallel Universes

Safe process for implementing new features.Safe process for implementing new features.

� Develop bell in one universe

� Develop whistle in another

� Don't inflict B's core dumps on W

� Eventually produce bell-and-whistle
release

15-441, S'06- 7 -

How?

Keep a global repository for the project.Keep a global repository for the project.

15-441, S'06- 8 -

The Repository

VersionVersion

� Contents of some files at a particular point in
time

� aka “Snapshot”

ProjectProject

� A “sequence” of versions

� (not really)

RepositoryRepository

� Directory where projects are stored

15-441, S'06- 9 -

The Repository

Stored in group-accessible locationStored in group-accessible location

� Old way: file system

� Modern way: “ repository server”

Versions Versions in repositoryin repository visible group-wide visible group-wide

� Whoever has read access

� “Commit access” often separate

15-441, S'06- 10 -

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

15-441, S'06- 11 -

The Working Directory

Many names (“sandbox”)Many names (“sandbox”)

Where revisions happenWhere revisions happen

Typically belongs to Typically belongs to oneone user user

Versions are Versions are checked outchecked out to here to here

New versions are New versions are checked inchecked in from here from here

15-441, S'06- 12 -

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out, and , and checking inchecking in

15-441, S'06- 13 -

Checking Out. Checking In.

Checking out Checking out

� A version is copied from the repository

� Typically “Check out the latest”

� Or: “Revision 3.1.4” , “Yesterday noon”

WorkWork

� Edit, add, remove, rename files

Checking in Checking in

� Working directory ⇒ repository atomically

� Result: new version

15-441, S'06- 14 -

Checking Out. Checking In.

Repository Working Directory

 v0.1 v0.1 copyv0.1
check out

15-441, S'06- 15 -

Checking Out. Checking In.

Repository Working Directory

 v0.1

v0.1++

v0.1 copy

mutate

v0.1

15-441, S'06- 16 -

Checking Out. Checking In.

Repository Working Directory

 v0.1

 v0.2 v0.1++v0.2

v0.1

check in

15-441, S'06- 17 -

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out, and , and checking inchecking in

Mechanisms for Mechanisms for mergingmerging

15-441, S'06- 18 -

Conflicts and Merging

Two people check out.Two people check out.

� Both modify foo.c

Each wants to check in a new version.Each wants to check in a new version.

� Whose is the correct new version?

15-441, S'06- 19 -

Conflicts and Merging

ConflictConflict

� Independent changes which “overlap”

� Textual overlap detected by revision
control

� Semantic conflict cannot be

Merge displays conflicting updates per fileMerge displays conflicting updates per file

Pick which code goes into the new versionPick which code goes into the new version

� A, B, NOTA

Story now, real-life example laterStory now, real-life example later

15-441, S'06- 20 -

Alice Begins Work
RepositoryAlice Bob

v0.2v0.2
copy

v0.2
fix b#1

15-441, S'06- 21 -

Bob Arrives, Checks Out
RepositoryAlice Bob

v0.2 v0.2
copy

v0.2
copy

v0.2
fix b#1

15-441, S'06- 22 -

Alice Commits, Bob Has Coffee
RepositoryAlice Bob

v0.2

v0.3

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-441, S'06- 23 -

Bob Fixes Something Too
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-441, S'06- 24 -

Wrong Outcome
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1 v0.3

15-441, S'06- 25 -

“Arguably Less Wrong”
RepositoryAlice Bob

v0.2

v0.3

v0.4

v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

15-441, S'06- 26 -

Merge, Bob, Merge!
RepositoryAlice Bob

v0.2

v0.3 v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

fix b#1
fix b#7

15-441, S'06- 27 -

Committing Genuine Progress
RepositoryAlice Bob

v0.2

v0.3

v0.4

v0.2
fix b#7

v0.2
copy

v0.2
copy

v0.2
fix b#1

fix b#1
fix b#7

15-441, S'06- 28 -

How?

Keep a global repository for the project.Keep a global repository for the project.

Each user keeps a working directory.Each user keeps a working directory.

Concepts of Concepts of checking outchecking out, and , and checking inchecking in

Mechanisms for Mechanisms for mergingmerging

Mechanisms for Mechanisms for branchingbranching

15-441, S'06- 29 -

Branching

A branch is a A branch is a sequence of versionssequence of versions

� (not really...)

Changes on one branch don't affect othersChanges on one branch don't affect others

Project may contain many branchesProject may contain many branches

Why branch?Why branch?

� Implement a new “major” feature

� Begin an independent sequence of
development

15-441, S'06- 30 -

Branching

 v0.3 v1.1branch

 v0.37 v1.42

 v1.43

merge

The actual branching
and merging take
place in a particular
user's working
directory, but this is
what such a sequence
would look like to
the repository.

15-441, S'06- 32 -

Branch Life Cycle

Successful development branchSuccessful development branch

� Merged back to parent

� No further versions

Unsuccessful development branchUnsuccessful development branch

� Some changes pulled out?

� No further versions

Maintenance branchMaintenance branch

� “End of Life” : No further versions

15-441, S'06- 36 -

Recommendation for 15-441

You can use CVS if you're used to itYou can use CVS if you're used to it

� Also: SVN, arch, ...

PRCS, Project Revision Control SystemPRCS, Project Revision Control System

� Small “ conceptual throw weight”

� Easy to use, state is visible (single text file)

� No bells & whistles

Setting to learn revision control Setting to learn revision control conceptsconcepts

� Quick start when joining research project/job

� (They will probably not be using PRCS)

15-441, S'06- 37 -

Getting Started

Add programs to your path (.bashrc):Add programs to your path (.bashrc):
$ export
PATH=/afs/cs.cmu.edu/academic/class/15410-
s06/bin:$PATH

Set environment variables (also .bashrc):Set environment variables (also .bashrc):
$ export
PRCS_REPOSITORY=/afs/cs.cmu.edu/academic/c
lass/15441-s06-users/group-99/REPOSITORY
$ export PRCS_LOGQUERY=1

15-441, S'06- 38 -

Creating A New Project

In a working directory:In a working directory:
$ prcs checkout P

� P is the name of the project

Creates a file: P.prjCreates a file: P.prj

15-441, S'06- 39 -

The Project File

;; -*- Prcs -*-
(Created-By-Prcs-Version 1 3 0)
(Project-Description "")
(Project-Version P 0 0)
(Parent-Version -*- -*- -*-)
(Version-Log "Empty project.")
(New-Version-Log "")
(Checkin-Time "Wed, 15 Jan 2003 21:38:47 -0500")
(Checkin-Login zra)
(Populate-Ignore ())
(Project-Keywords)
(Files
;; This is a comment. Fill in files here.
;; For example: (prcs/checkout.cc ())
)
(Merge-Parents)
(New-Merge-Parents)

Description of project.

Make notes about
changes before
checking in a new
version

List of files

15-441, S'06- 40 -

Using the Project File

Adding FilesAdding Files
$ prcs populate P file1 file2 … fileN

� To add every file in a directory
$ prcs populate P

� Rarely what you want – expensive to source-control core
files!

Removing, renaming filesRemoving, renaming files

� See http://www.cs.cmu.edu/~410/prcs-cmu

15-441, S'06- 41 -

Checking In

Checking inChecking in
$ prcs checkin P

� Check-in will fail if there are conflicts.

� Hey, we forgot to talk about conflicts!

15-441, S'06- 42 -

Conflicts and Merging

Suppose this file is in the repository for Suppose this file is in the repository for
project P:project P:

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 printf("Hello World!\n");
 return 0;
}

15-441, S'06- 43 -

Conflicts and Merging

Suppose Alice and Charlie check out this Suppose Alice and Charlie check out this
version, and make changes:version, and make changes:

Alice's Version
#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
 /* prints "Hello World"
 to stdout */
 printf("Hello World!\n");
 return SUPER;
}

Charlie's Version
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 /* this, like, says
 hello, and stuff */
 printf("Hello Hercules!\n");
 return 42;
}

15-441, S'06- 44 -

Conflicts and Merging

Suppose Alice checks in first.Suppose Alice checks in first.
$ prcs checkin

Now Charlie must perform a mergeNow Charlie must perform a merge
$ prcs checkin ⇒ will fail
$ prcs merge

	 Default merge option performs a CVS-like
merge.

$ prcs checkin ⇒ should work now

15-441, S'06- 45 -

Merge Mutilation

#include <stdlib.h>
#include <stdio.h>

#define SUPER 0

int main(void)
{
<<< 0.2(w)/hello.c Wed, 19 Feb 2003 21:26:36 -0500 zra (P/0_hello.c 1.2 644)
 /* this, like, says hello, and stuff */
 printf("Hello Hercules!");
 return 42;
===
 /* prints "Hello World" to stdout */
 printf("Hello World!");
 return SUPER;
>>> 0.3/hello.c Wed, 19 Feb 2003 21:36:53 -0500 zra (P/0_hello.c 1.3 644)
}

15-441, S'06- 46 -

Conflicts and Merging

Pick/create the desired versionPick/create the desired version

 Check that into the repository.

15-441, S'06- 47 -

Branching

To create the first version of a new branch:To create the first version of a new branch:
$ prcs checkin -rExperimental_VM
Kern.prj

To merge with branch X version 37:To merge with branch X version 37:
$ prcs merge -rX.37 Kern.prj

15-441, S'06- 48 -

Information

To get a version summary about P:To get a version summary about P:
$ prcs info P

� with version logs:
$ prcs info -l P

15-441, S'06- 49 -

CVS

FeaturesFeatures

� What your roommate probably uses

� Much more popular than PRCS!

� Commit: atomic if you are careful

� Must commit in the top-level directory

� Named snapshots: if you “cvs tag” often

� Branching: works if you are careful

� Core operations require care & expertise!!!

15-441, S'06- 50 -

SVN - “SubVersion”

FeaturesFeatures

� Cool name

� Somebody on your hall probably uses it

� Much more popular than PRCS!

� Probably less local hand-holding than CVS

15-441, S'06- 51 -

RCS – Revision Control System

FeaturesFeatures

� The data structures CVS & PRCS use
internally

� Very reliable (in wide use since 1980's)

� Core orientation is single directories, not
trees

� Lock-based - “no merge conflicts!”

15-441, S'06- 52 -

RCS – Storage

Each file stored two placesEach file stored two places

� “working file” - foo.c

� RCS file – foo.c,v

	 Or, more conveniently, RCS/foo.c,v

� If you conveniently “mkdir RCS”

RCS file contains multiple versions of working fileRCS file contains multiple versions of working file

� Format is basically diffs against current
version

15-441, S'06- 53 -

Creating RCS Files
After making ‘RCS’ subdirectory…After making ‘RCS’ subdirectory…

Initialize RCS for your file Initialize RCS for your file mysource.cmysource.c (assume you (assume you
have already created it) by checking it in (have already created it) by checking it in (cici))

Result: version 1.1Result: version 1.1

[geoffl@ux3 ~/tmp]$ ci mysource.c
RCS/mysource.c,v <-- mysource.c
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> This source file contains a simple algorithm to solve the Halting
Problem.
>> .
initial revision: 1.1
done

15-441, S'06- 54 -

Checking out files
In previous example, after In previous example, after cici, , mysource.cmysource.c is is gonegone!!

To retrieve To retrieve mysource.cmysource.c, use , use coco command (“check out”) command (“check out”)

Note: permissions don't let us change Note: permissions don't let us change mysource.cmysource.c

 Our copy is read-only—“this is a feature, not a bug”

[geoffl@ux3 ~/tmp]$ ls -l
total 2
drwxr-xr-x 2 geoffl users 2048 Jan 19 15:39 RCS
[geoffl@ux3 ~/tmp]$ co mysource.c
RCS/mysource.c,v --> mysource.c
revision 1.1
done
[geoffl@ux3 ~/tmp]$ ls -l
total 3
-r--r--r-- 1 geoffl users 137 Jan 19 15:39 mysource.c
drwxr-xr-x 2 geoffl users 2048 Jan 19 15:39 RCS

15-441, S'06- 55 -

Locking files

To change To change mysource.cmysource.c, must acquire lock, must acquire lock

 co –l mysource.c does checkout with lock

 rcs –l mysource.c acquires lock after the fact

Obtaining lock sets file to read/writeObtaining lock sets file to read/write

� Plan: edit the file quickly, check it in

� ci –u mysource.c means “check in and unlock”

 Not the plan

� Lock the file, go home and go to sleep

� Now your partner can't lock the file

15-441, S'06- 56 -

Locking files

To change To change mysource.cmysource.c, must acquire lock, must acquire lock

 co –l mysource.c does checkout with lock

 rcs –l mysource.c acquires lock after the fact

Obtaining lock sets file to read/writeObtaining lock sets file to read/write

� Plan: edit the file quickly, check it in

� ci –u mysource.c means “check in and unlock”

 Not the plan

� Lock the file, go home and go to sleep

� Now your partner can't lock the file

* Guess why CVS was invented?

15-441, S'06- 57 -

Locking files

To change To change mysource.cmysource.c, must acquire lock, must acquire lock

 co –l mysource.c does checkout with lock

 rcs –l mysource.c acquires lock after the fact

Obtaining lock sets file to read/writeObtaining lock sets file to read/write

� Plan: edit the file quickly, check it in

� ci –u mysource.c means “check in and unlock”

 Not the plan

� Lock the file, go home and go to sleep

� Now your partner can't lock the file

* Guess why CVS was invented?

� Solution: break your partner's lock

 Now your partner gets to merge in your changes

 (Luckily, RCS doesn't have merge conflicts like CVS, PRCS)

15-441, S'06- 58 -

Versions
Each version of the file has a version numberEach version of the file has a version number

� “ release.revision” format –

� 4.2 is release 4, revision 2

� Doesn’t necessarily correspond to anything
about real world version numbers

� By default, each ci of a changed file increments
revision number by 1

Can use Can use -r-r flag to specify version numbers flag to specify version numbers

� Use this with co to retrieve old versions

� Use this with ci to name new versions

� ci –r1.8 mysource.c will check in mysource.c as 1.8

� ci –r2 mysource.c will check in mysource.c as 2.1

15-441, S'06- 59 -

Info On “Alternatives”
More information about CVS (my personal choice)More information about CVS (my personal choice)

� http://www.nongnu.org/cvs/

� http://www.tortoisecvs.org/ for Windows users

RCSRCS

� Look at man rcs, man rcsintro

� Official RCS homepage:

� http://www.cs.purdue.edu/homes/trinkle/RCS/

� Other useful features

� ci –l: check-in a version but keep the file and the lock

� ci –u: check-in a version but keep a read-only version of file

� rcsdiff: display differences between versions

� rcsmerge: merge changes in different versions of a file

