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Packet Forwarding

● Use IP address in the header to determine 
where to forward the packet

» Longest prefix match in the forwarding table
» Send packet out appropriate port

● Today’s lecture: how to create and manage 
the forwarding table

» Focus on intra-domain routing
» Route selection is based on the optimization of a routing 

metric
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Outline

● Distance vector routing
● RIP
● Link state routing
● OSPF
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Abstraction: 
Represent Network as a Graph

● Represent each router as node
● Direct link between routers represented by edge

» Symmetric links ⇒ undirected graph
● Edge “cost” c(x,y) denotes measure of ``cost’’ of using link

» delay, $ cost, or congestion level

● Must determine least cost path for every node pair
– Path cost d(x,y) = sum of link costs
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Routes from Node A

● Properties
» Some set of shortest paths forms tree

– Shortest path spanning tree
» Solution not unique

– E.g., A-E-F-C-D also has cost 7
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Classes of Routing Solutions

● Centralized
» Collect graph structure in one place
» Use standard graph algorithm
» Disseminate routing tables

● Partially Distributed
» Every node collects complete graph structure
» Each locally computes shortest paths from it
» Each generates own routing table
» “Link-state” algorithm

● Fully Distributed
» No one has copy of graph
» Nodes construct their own tables iteratively
» Each sends information about its table to neighbors
» “Distance-Vector” algorithm

Does this work?
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Distance-Vector Method

● Idea is to iteratively improve least-cost path to any 
destination based on information learned from neighbors

» Table lists cost/next hop of best known path to destination
» Initially table only has entries for directly connected nodes
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Distance-Vector Update

● Update(x,y,z)
d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z

if d < d(x,y)
# Found better path
return d,z # Updated cost / next hop

else
return d(x,y), nexthop(x,y) # Existing cost / next hop
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Algorithm

● Bellman-Ford algorithm
● Repeat

For every node x
For every neighbor z

For every destination y
d(x,y) ← Update(x,y,z)

● Until Converge

● Nodes x can run the algorithm in fully 
distributed fashion
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Start
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Iteration #1
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Iteration #2
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Distance Vector: Link Cost 
Changes

Link cost changes:
● Node detects local link cost change 
● Updates distance table 
● If cost change in least cost path, notify 

neighbors
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Distance Vector: Link Cost 
Changes

Link cost changes:
● Good news travels fast 
● Bad news travels slow -

“count to infinity” problem! X Z
14

50

Y
60

algorithm
continues

on!

Peter A. Steenkiste, SCS, CMU 15

Distance Vector: Split Horizon

If Z routes through Y to get to X :
● Z does not advertise its route to X back to Y
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Distance Vector: Poison Reverse

If Z routes through Y to get to X :
● Z tells Y its (Z’s) distance to X is infinite (so 

Y won’t route to X via Z)
● Will this completely solve count to infinity 

problem? 
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Poison Reverse Failures

● Iterations don’t converge
● “Count to infinity”
● Solution

» Make “infinity” smaller
» What is upper bound on maximum 

path length?
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Routing Information Protocol 
(RIP)

● Earliest IP routing protocol (1982 BSD)
» Current standard is version 2 (RFC 1723)

● Features
» Every link has cost 1
» “Infinity” = 16

– Limits to networks where everything reachable within 
15 hops

● Sending Updates
» Every router listens for updates on UDP port 520
» RIP message can contain entries for up to 25 table entries
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RIP Updates

● Initial
» When router first starts, asks for copy of table for every 

neighbor
» Uses it to iteratively generate own table

● Periodic
» Every 30 seconds, router sends copy of its table to each 

neighbor
» Neighbors use to iteratively update their tables

● Triggered
» When every entry changes, send copy of entry to neighbors

– Except for one causing update (split horizon rule)
» Neighbors use to update their tables
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RIP Staleness / Oscillation 
Control

● Small Infinity
» Count to infinity doesn’t take very long

● Route Timer
» Every route has timeout limit of 180 seconds

– Reached when haven’t received update from next 
hop for 6 periods

» If not updated, set to infinity
» Soft-state refresh important concept!!!

● Behavior
» When router or link fails, can take minutes to stabilize
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RIP Table Processing

● RIP routing tables managed by application-level process 
called route-d (daemon)

● advertisements sent in UDP packets, periodically 
repeated
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Outline

● Distance vector routing
● RIP
● Link state routing
● OSPF
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Link State Protocol Concept

● Every node gets complete copy of graph
» Every node “floods” network with data about its outgoing 

links

● Every node computes routes to every other 
node

» Using single-source, shortest-path algorithm

● Process performed whenever needed
» When connections die / reappear
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Sending Link States by Flooding

● X wants to send 
information

» Sends on all outgoing links

● When node Y receives 
information from Z

» Send on all links other than Z

● Sequence number used 
to suppress duplicates
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Dijkstra’s Algorithm

● Given
» Graph with source node s and edge costs c(u,v)
» Determine least cost path from s to every node v

● Shortest Path First Algorithm
» Traverse graph in order of least cost from source
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Dijkstra’s Algorithm: Concept

●Node Sets
» Done

– Already have least cost path to it
» Horizon:

– Reachable in 1 hop from node in Done
» Unseen:

– Cannot reach directly from node in Done

● Label
» d(v) = path cost

– From s to v
● Path

» Keep track of last link in path
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Dijkstra’s Algorithm: Initially

● No nodes done
● Source in horizon
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Dijkstra’s Algorithm: Selection

» Select node v in horizon with minimum d(v)
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Dijkstra’s Algorithm: Selection

» Add selected node to Done
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Dijkstra’s Algorithm: Update

● Update costs based on paths having last link from newly added 
Done node

» Could change values of nodes in horizon
» Could add new nodes to horizon

● Update link information
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Link State Characteristics

● With consistent 
LSDBs*, all nodes 
compute 
consistent loop-
free paths

● Can still have 
transient loops
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OSPF Routing Protocol

● Open
» Open standard created by IETF

● Shortest-path first
» Another name for Dijkstra’s algorithm

● RIP viewed as outmoded
» Good when networks small and routers had limited 

memory & computational power

● OSPF Advantages
» Fast convergence when configuration changes
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OSPF Reliable Flooding

● Transmit link state advertisements
» Originating router

– Typically, minimum IP address for router
» Link ID

– ID of router at other end of link
» Metric

– Cost of link
» Link-state age

– Incremented each second
– Packet expires when reaches 3600

» Sequence number
– Incremented each time sending new link information
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OSPF Flooding Operation

● Node X Receives LSA from Node Y
» With Sequence Number q
» Looks for entry with same origin/link ID

● Cases
» No entry present

– Add entry, propagate to all neighbors other than Y
» Entry present with sequence number p < q

– Update entry, propagate to all neighbors other than Y
» Entry present with sequence number p > q

– Send entry back to Y
– To tell Y that it has out-of-date information

» Entry present with sequence number p = q
– Ignore it
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Flooding Issues

● When should it be performed
» Periodically
» When status of link changes

– Detected by connected node

● What happens when router goes down & back 
up

» Sequence number reset to 0
– Other routers may have entries with higher sequence 

numbers
» Router will send out LSAs with number 0
» Will get back LSAs with last valid sequence number p
» Router sets sequence number to p+1 & resends
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Comparison of 
LS and DV Algorithms

Message complexity
● LS: with n nodes, E links, 

O(nE) messages
● DV: exchange between 

neighbors only

Space requirements:
» LS maintains entire 

topology
» DV maintains only neighbor 

state

Speed of Convergence
● LS: Complex computation

» But…can forward before computation
» may have oscillations

● DV: convergence time varies
» may be routing loops
» count-to-infinity problem
» (faster with triggered updates)
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Robustness: what happens if router malfunctions?
LS:

• node can advertise incorrect link cost
• each node computes only its own table

DV:
• DV node can advertise incorrect path cost
• each node’s table used by others 

• errors propagate thru network
• Other tradeoffs

• Making LSP flood reliable

Comparison of LS and DV 
Algorithms


