
Page 1

Peter A. Steenkiste, SCS, CMU 1

Lecture 12
Routing

Peter Steenkiste
Departments of Computer Science and

Electrical and Computer Engineering
Carnegie Mellon University

15-441 Networking, Spring 2006
http://www.cs.cmu.edu/~prs/15-441

Peter A. Steenkiste, SCS, CMU 2

Packet Forwarding

● Use IP address in the header to determine
where to forward the packet

» Longest prefix match in the forwarding table
» Send packet out appropriate port

● Today’s lecture: how to create and manage
the forwarding table

» Focus on intra-domain routing
» Route selection is based on the optimization of a routing

metric

Peter A. Steenkiste, SCS, CMU 3

Outline

● Distance vector routing
● RIP
● Link state routing
● OSPF

Peter A. Steenkiste, SCS, CMU 4

Abstraction:
Represent Network as a Graph

● Represent each router as node
● Direct link between routers represented by edge

» Symmetric links ⇒ undirected graph
● Edge “cost” c(x,y) denotes measure of ``cost’’ of using link

» delay, $ cost, or congestion level

● Must determine least cost path for every node pair
– Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Peter A. Steenkiste, SCS, CMU 5

Routes from Node A

● Properties
» Some set of shortest paths forms tree

– Shortest path spanning tree
» Solution not unique

– E.g., A-E-F-C-D also has cost 7

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

A0A

B4B

E6C

B7D

E2E

E5F

Next
Hop

CostDest

Peter A. Steenkiste, SCS, CMU 6

Classes of Routing Solutions

● Centralized
» Collect graph structure in one place
» Use standard graph algorithm
» Disseminate routing tables

● Partially Distributed
» Every node collects complete graph structure
» Each locally computes shortest paths from it
» Each generates own routing table
» “Link-state” algorithm

● Fully Distributed
» No one has copy of graph
» Nodes construct their own tables iteratively
» Each sends information about its table to neighbors
» “Distance-Vector” algorithm

Does this work?

Page 2

Peter A. Steenkiste, SCS, CMU 7

Distance-Vector Method

● Idea is to iteratively improve least-cost path to any
destination based on information learned from neighbors

» Table lists cost/next hop of best known path to destination
» Initially table only has entries for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A

A0A

B4B

–∞C

–∞D

E2E

F6F

Next
Hop

CostDest

Peter A. Steenkiste, SCS, CMU 8

Distance-Vector Update

● Update(x,y,z)
d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z

if d < d(x,y)
Found better path
return d,z # Updated cost / next hop

else
return d(x,y), nexthop(x,y) # Existing cost / next hop

x

z

y

c(x,z)
d(z,y)

d(x,y)

Peter A. Steenkiste, SCS, CMU 9

Algorithm

● Bellman-Ford algorithm
● Repeat

For every node x
For every neighbor z

For every destination y
d(x,y) ← Update(x,y,z)

● Until Converge

● Nodes x can run the algorithm in fully
distributed fashion

Peter A. Steenkiste, SCS, CMU 10

Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

A0A

B4B

–∞C

–∞D

E2E

F6F

HopCstDst

Table for B

A4A

B0B

–∞C

D3D

–∞E

F1F

HopCstDst

Table for C

–∞A

–∞B

C0C

D1D

–∞E

F1F

HopCstDst

Table for D

–∞A

B3B

C1C

D0D

–∞E

–∞F

HopCstDst

Table for E

A2A

–∞B

–∞C

–∞D

E0E

F3F

HopCstDst

Table for F

A6A

B1B

C1C

–∞D

E3E

F0F

HopCstDst

Optimum 1-hop paths

Peter A. Steenkiste, SCS, CMU 11

Iteration #1

Table for A

A0A

B4B

F7C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F7A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

–∞E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

–∞D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Peter A. Steenkiste, SCS, CMU 12

Iteration #2

Table for A

A0A

B4B

E6C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F6A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

C5E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

F5D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Page 3

Peter A. Steenkiste, SCS, CMU 13

Distance Vector: Link Cost
Changes

Link cost changes:
● Node detects local link cost change
● Updates distance table
● If cost change in least cost path, notify

neighbors
X Z

14

50

Y
1

algorithm
terminates“good

news
travels
fast”

Peter A. Steenkiste, SCS, CMU 14

Distance Vector: Link Cost
Changes

Link cost changes:
● Good news travels fast
● Bad news travels slow -

“count to infinity” problem! X Z
14

50

Y
60

algorithm
continues

on!

Peter A. Steenkiste, SCS, CMU 15

Distance Vector: Split Horizon

If Z routes through Y to get to X :
● Z does not advertise its route to X back to Y

algorithm
terminates

X Z
14

50

Y
60

? ? ?

Peter A. Steenkiste, SCS, CMU 16

Distance Vector: Poison Reverse

If Z routes through Y to get to X :
● Z tells Y its (Z’s) distance to X is infinite (so

Y won’t route to X via Z)
● Will this completely solve count to infinity

problem?

X Z
14

50

Y
60

algorithm
terminates

Peter A. Steenkiste, SCS, CMU 17

Poison Reverse Failures

● Iterations don’t converge
● “Count to infinity”
● Solution

» Make “infinity” smaller
» What is upper bound on maximum

path length?

Table for A

F7C

HopCstDst

Table for B

A8C

HopCstDst

Table for F

C1C

HopCstDst

Table for F

–∞C

HopCstDst

Table for A

–∞C

HopCstDst Forced
Update

Table for B

A14C

HopCstDst
Forced
Update

F C
6

1

1

1

B
D

A

4

∞∞

Table for D

B9C

HopCstDst

Forced
Update

Table for A

D13C

HopCstDst Better
Route

Table for D

B15C

HopCstDst

Table for A

D19C

HopCstDst Forced
Update

•
•
•

Forced
Update

Peter A. Steenkiste, SCS, CMU 18

Routing Information Protocol
(RIP)

● Earliest IP routing protocol (1982 BSD)
» Current standard is version 2 (RFC 1723)

● Features
» Every link has cost 1
» “Infinity” = 16

– Limits to networks where everything reachable within
15 hops

● Sending Updates
» Every router listens for updates on UDP port 520
» RIP message can contain entries for up to 25 table entries

Page 4

Peter A. Steenkiste, SCS, CMU 19

RIP Updates

● Initial
» When router first starts, asks for copy of table for every

neighbor
» Uses it to iteratively generate own table

● Periodic
» Every 30 seconds, router sends copy of its table to each

neighbor
» Neighbors use to iteratively update their tables

● Triggered
» When every entry changes, send copy of entry to neighbors

– Except for one causing update (split horizon rule)
» Neighbors use to update their tables

Peter A. Steenkiste, SCS, CMU 20

RIP Staleness / Oscillation
Control

● Small Infinity
» Count to infinity doesn’t take very long

● Route Timer
» Every route has timeout limit of 180 seconds

– Reached when haven’t received update from next
hop for 6 periods

» If not updated, set to infinity
» Soft-state refresh important concept!!!

● Behavior
» When router or link fails, can take minutes to stabilize

Peter A. Steenkiste, SCS, CMU 21

RIP Table Processing

● RIP routing tables managed by application-level process
called route-d (daemon)

● advertisements sent in UDP packets, periodically
repeated

Peter A. Steenkiste, SCS, CMU 22

Outline

● Distance vector routing
● RIP
● Link state routing
● OSPF

Peter A. Steenkiste, SCS, CMU 23

Link State Protocol Concept

● Every node gets complete copy of graph
» Every node “floods” network with data about its outgoing

links

● Every node computes routes to every other
node

» Using single-source, shortest-path algorithm

● Process performed whenever needed
» When connections die / reappear

Peter A. Steenkiste, SCS, CMU 24

Sending Link States by Flooding

● X wants to send
information

» Sends on all outgoing links

● When node Y receives
information from Z

» Send on all links other than Z

● Sequence number used
to suppress duplicates

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

Page 5

Peter A. Steenkiste, SCS, CMU 25

Dijkstra’s Algorithm

● Given
» Graph with source node s and edge costs c(u,v)
» Determine least cost path from s to every node v

● Shortest Path First Algorithm
» Traverse graph in order of least cost from source

Peter A. Steenkiste, SCS, CMU 26

Dijkstra’s Algorithm: Concept

●Node Sets
» Done

– Already have least cost path to it
» Horizon:

– Reachable in 1 hop from node in Done
» Unseen:

– Cannot reach directly from node in Done

● Label
» d(v) = path cost

– From s to v
● Path

» Keep track of last link in path

A

E

F

C

D

B

2

3

6

3

1

1

1

3
Source

Node

Done

Horizon
Unseen

0

2
5

3

∞

∞

Current Path Costs

Last Links

Peter A. Steenkiste, SCS, CMU 27

Dijkstra’s Algorithm: Initially

● No nodes done
● Source in horizon

A

E

F

C

D

B

2

3

6

3

1

1

1

3
Source

Node

Done
Horizon

Unseen

0

∞
∞

∞

∞

∞

Current Path Costs

Peter A. Steenkiste, SCS, CMU 28

Dijkstra’s Algorithm: Selection

» Select node v in horizon with minimum d(v)

A

E

F

C

D

B

2

3

6

3

1

1

1

3
Source

Node

Done

Horizon
Unseen

0

2
5

3

∞

∞

Current Path Costs

B

Peter A. Steenkiste, SCS, CMU 29

Dijkstra’s Algorithm: Selection

» Add selected node to Done

A

C

2

3

6

3

1

1

1

3
Source

Node

Done

Horizon

Unseen

0

2
5

3

∞

∞

Current Path Costs
F

B

D

E

Peter A. Steenkiste, SCS, CMU 30

Dijkstra’s Algorithm: Update

● Update costs based on paths having last link from newly added
Done node

» Could change values of nodes in horizon
» Could add new nodes to horizon

● Update link information

2
6

3

1

1

1

3
Source

Node

Done
Horizon

Unseen

0

2
5

3

∞

∞

Current Path Costs
4

6

Revised Path Costs

A

C3

D

B

E

F

Page 6

Peter A. Steenkiste, SCS, CMU 31

Link State Characteristics

● With consistent
LSDBs*, all nodes
compute
consistent loop-
free paths

● Can still have
transient loops

A

B

C

D

1

3

5 2

1

Packet from C A
may loop around BDC
if B knows about failure
and C & D do not

X

*Link State Data Base

Peter A. Steenkiste, SCS, CMU 32

OSPF Routing Protocol

● Open
» Open standard created by IETF

● Shortest-path first
» Another name for Dijkstra’s algorithm

● RIP viewed as outmoded
» Good when networks small and routers had limited

memory & computational power

● OSPF Advantages
» Fast convergence when configuration changes

Peter A. Steenkiste, SCS, CMU 33

OSPF Reliable Flooding

● Transmit link state advertisements
» Originating router

– Typically, minimum IP address for router
» Link ID

– ID of router at other end of link
» Metric

– Cost of link
» Link-state age

– Incremented each second
– Packet expires when reaches 3600

» Sequence number
– Incremented each time sending new link information

Peter A. Steenkiste, SCS, CMU 34

OSPF Flooding Operation

● Node X Receives LSA from Node Y
» With Sequence Number q
» Looks for entry with same origin/link ID

● Cases
» No entry present

– Add entry, propagate to all neighbors other than Y
» Entry present with sequence number p < q

– Update entry, propagate to all neighbors other than Y
» Entry present with sequence number p > q

– Send entry back to Y
– To tell Y that it has out-of-date information

» Entry present with sequence number p = q
– Ignore it

Peter A. Steenkiste, SCS, CMU 35

Flooding Issues

● When should it be performed
» Periodically
» When status of link changes

– Detected by connected node

● What happens when router goes down & back
up

» Sequence number reset to 0
– Other routers may have entries with higher sequence

numbers
» Router will send out LSAs with number 0
» Will get back LSAs with last valid sequence number p
» Router sets sequence number to p+1 & resends

Peter A. Steenkiste, SCS, CMU 36

Comparison of
LS and DV Algorithms

Message complexity
● LS: with n nodes, E links,

O(nE) messages
● DV: exchange between

neighbors only

Space requirements:
» LS maintains entire

topology
» DV maintains only neighbor

state

Speed of Convergence
● LS: Complex computation

» But…can forward before computation
» may have oscillations

● DV: convergence time varies
» may be routing loops
» count-to-infinity problem
» (faster with triggered updates)

Page 7

Peter A. Steenkiste, SCS, CMU 37

Robustness: what happens if router malfunctions?
LS:

• node can advertise incorrect link cost
• each node computes only its own table

DV:
• DV node can advertise incorrect path cost
• each node’s table used by others

• errors propagate thru network
• Other tradeoffs

• Making LSP flood reliable

Comparison of LS and DV
Algorithms

