
UDP & TCP:
Transport Protocols

Mar. 27, 2006

TopicsTopics
� What's a Transport Protocol?
� Internet architectural history reminder

� TCP/UDP split
� UDP and applications
� TCP overview

Slides – Randy Bryant, Hui Zhang, Dave Eckhardt
L16_UDPTCP

15-441
Computer Networking

– 2 – 15-441

Synchronization
Project 3: TCPProject 3: TCP

� Look for writeup this evening/tomorrow
� You can start looking at RFC 793 right away

� “Start early” - of course
� More subtle: “incremental development”

� “Code complete, then debug” is a very bad plan
� Much better to proceed from one partial TCP to another

� Example
� Stage 11 can be stop&wait
� Stage 12 can be sliding-window
� If stage 12 doesn't work, you can turn in stage 11

– 3 – 15-441

Readings
Section 2.5Section 2.5

� “Reliable Transmission”
� Issues, stop&wait, sliding window

Chapter 5Chapter 5
� 5.1 UDP, 5.2 TCP
� 5.3 (RPC) will be addressed later (though reading early is ok)
� 5.4 (Performance) shouldn't be too painful

– 4 – 15-441

Architectural Reminder
CerfKahn74CerfKahn74

� A Protocol for Packet Network Intercommunication
� Lays out fundamental Internet architectural assumptions
� Subnets will vary in terms of addressing, size, protocol
� Application protocols will be end-to-end

� All hosts will speak same application protocols
� File-format translation as part of one file-transfer

protocol
� No “file translation gateways” at campus boundaries

� “One protocol to bind them” - IP
� Particular “division of labor”

� Error control is a host matter
� Fragmentation compromise – changed by IPv6

– 5 – 15-441

CerfKahn74 vs. IPv4
Addresses are largerAddresses are larger

� Paper
� 8 network bits

� “seems sufficient for the forseeable future”
� 16 host bits

� “seems more than sufficient for any given network”
� IPv4 – 32 bits
� IPv6 128 bits

� “Often” 64 network bits, 64 host bits (MAC address)

– 6 – 15-441

CerfKahn74 vs. IPv4
Layering splitLayering split

� Paper presented “Transmission Control Program” protocol
� One reliable in-order message-stream protocol
� One header, so routers understood everything

� Paper's TCP was split into
� IP – host addressing, data delivery
� TCP – reliable in-order byte-stream protocol

� (note: “message-stream” got lost)
� UDP – unreliable un-ordered packet protocol

– 7 – 15-441

Internet Protocol (IP)

IP Delivery ModelIP Delivery Model
� Connectionless datagram

� Each packet independent entity
� Each packet contains source & destination address

� Best effort service
� Packets may be dropped, duplicated, delivered out of order
� No performance guarantee

Network technology

Network applications email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

 ethernet PPP…

CSMA async sonet...

 copper fiber radio...

Steve Deering, CISCO

– 8 – 15-441

Transport Protocols

Lowest level end-to-end Lowest level end-to-end
protocol.protocol.

� Header generated by
sender is interpreted
only by the destination

� Routers view transport
header as part of the
payload

Adds functionality to the Adds functionality to the
best-effort packet delivery best-effort packet delivery
IP service.IP service.

� Make up for the
“shortcomings” of the
core network

7

6

5

7

6

5

Transport

IP

Datalink

Physical

Transport

IP

Datalink

Physical

IP

router

2 2

1 1

– 9 – 15-441

(Possible) Transport Protocol
Functions
Multiplexing/demultiplexing for multiple applications.Multiplexing/demultiplexing for multiple applications.

� “Port” abstraction abstracts OS notions of “process”

Connection establishment.Connection establishment.
� Logical end-to-end connection
� Connection state to optimize performance

Error control.Error control.
� Hide unreliability of the network layer from applications
� Many types of errors: corruption, loss, duplication, reordering.

End-to-end flow control.End-to-end flow control.
� Avoid flooding the receiver

Congestion control.Congestion control.
� Avoid flooding the network

– 10 – 15-441

User Datagram Protocol (UDP)
� Transforms IP's connectionless datagram into...

connectionless datagram!

Addressing used for (de)multiplexing.Addressing used for (de)multiplexing.
� Port numbers = connection/application endpoint

End-to-end reliability via end-to-end checksum.End-to-end reliability via end-to-end checksum.
� Protects against data corruption errors between source and

destination (links, switches/routers, memory bus)
� Does not protect against packet loss, duplication or

reordering
� Checksum chosen to be efficient in software (vs. CRC)

� Optional in theory, but you'd better use it in practice
Source Port Dest. Port

Length D. Checksum

– 11 – 15-441

Two-Level Multiplexing
� How does the protocol stack know which application should

receive a particular packet?

Each IP datagram contains “protocol ID” (UDP, TCP, ...)Each IP datagram contains “protocol ID” (UDP, TCP, ...)
� Specifies transport protocol (kernel module) to get packet

Transport layer uses the “port” field of transport Transport layer uses the “port” field of transport
header to identify the application socket.header to identify the application socket.
� (Destination IP, destination port) mapped to socket
� Port numbers 0-1023 are “well-known” port numbers

UDP packets delivered to a socket can come from UDP packets delivered to a socket can come from
various sources (connectionless)various sources (connectionless)
� To reply, we swap source (IP,port) with destination (IP,port)

– 12 – 15-441

Two-Level Multiplexing

0 4 8 12 16 19 24 28 31

ver-
sion

HLen TOS Length

Ident Flags Offset

TTL UDP = 17 IP Header Checksum

Source Address

Destination Address

Options (if any)

UDP Data Bytes

UDP Source Port UDP Destination Port

UDP Data Length UDP Data Checksum

– 13 – 15-441

Uses of UDP

1. Original motivator1. Original motivator
� Experimental packet-voice protocol doesn't want TCP

� TCP “helpfully” imposes in-order delivery
� Audio-data packets have independent deadlines

� Once packet #37 is late, it's late
� Don't delay playing packet #38 until #37 is retransmitted

2. Architectural role2. Architectural role
� Lab for experimental transport protocols

� Getting a new IP-level protocol number requires results
� Use the port addressing provided by UDP
� Implement new & improved reliability, flow control, ordering,

congestion control

– 14 – 15-441

Uses of UDP

3. Request/Response for vital Internet protocols3. Request/Response for vital Internet protocols
� DNS, NTP, DHCP, Kerberos, AFS, Zephyr, TFTP, SNMP
� Remote procedure calls
� Distributed computing communication libraries
� Easy to overlook, but...

� Internet depends on UDP-based infrastructure protocols

Why use UDP?Why use UDP?
� TCP connection is impossible
� TCP connection is too expensive
� TCP connection expense is wasteful
� Communication pattern isn't point-to-point

– 15 – 15-441

UDP Case Studies

DHCP – Dynamic Host Configuration ProtocolDHCP – Dynamic Host Configuration Protocol
� TCP connection is impossible

� We don't have an IP address yet!

DNS – Domain Name SystemDNS – Domain Name System
� TCP connection is too expensive

� Everybody on the planet talks to root name servers
� That would be a lot of kernel socket buffers!

� TCP connection expense is wasteful
� TCP connection costs 5 packets (2 RTT) by itself
� DNS query/response needs only 2 packets, 1 RTT

NTP – Network Time ProtocolNTP – Network Time Protocol
� Setting your clock requires estimating latency to peer
� TCP buffering interferes with estimation

– 16 – 15-441

UDP Case Studies

SNMP – Simple Network Management ProtocolSNMP – Simple Network Management Protocol
� TCP connection is too expensive

� Workgroup router can't afford connection state...
� ...would be easy denial-of-service attack

Kerberos, ZephyrKerberos, Zephyr
� Like DNS: many clients, request/response pattern
� TCP connection is too expensive & wasteful

TFTPTFTP
� TCP implementation is too expensive

� Boot code in BIOS...size is limited

– 17 – 15-441

UDP Case Studies

AFS - “Andrew File System” (or not)AFS - “Andrew File System” (or not)
� Counts as “experimental transport protocol”
� In 1980's, many TCP implementations had poor throughput
� Easier to implement a similar protocol than to fix kernels
� Unclear what the “right” answer is

NFS – Sun's “Network File System”NFS – Sun's “Network File System”
� Similar reasons, judgement to AFS
� Lots of people run NFS over TCP

– 18 – 15-441

UDP Case Studies

RPC (Remote Procedure Call) librariesRPC (Remote Procedure Call) libraries
� SunRPC, CORBA, DCOM, etc.
� Many operate over both UDP and TCP
� Application often selects via flag

� Application, not library, knows how many calls to same server
� If multiple calls expected, TCP setup cost can be amortized

Special-purpose communicationsSpecial-purpose communications
� Examples

� ISIS distributed-computation library
� IP multicast

� Communication pattern isn't point-to-point

– 19 – 15-441

Byte Stream?

TCP provides a “reliable byte-stream connection”TCP provides a “reliable byte-stream connection”
� What's that?

– 20 – 15-441

Byte Stream

TCP provides a “reliable byte-stream connection”TCP provides a “reliable byte-stream connection”
� Connection

� Information is part of a “session” or “association” which lasts
for longer than a single packet

� Bytes arrive “on a connection”, not “from the network”
� Byte-stream: write(server, “abc”, 3); write(server, “def”, 3);

� Server will receive 'a' before 'b', 'b' before 'c', ..., 'e' before 'f'
� read(client, buf, 10) may receive

� “abc”, 3
� “abcdef”, 6
� “a”, 1

� Reliable
� Even if network loses the “abc” packet the 1 st time (and 2 nd...)
� Even if network delivers “def” packet before “abc” packet

– 21 – 15-441

Fatal Errors

TCP provides a “reliable byte-stream connection”TCP provides a “reliable byte-stream connection”
� Reliable

� Even if an asteroid lands on the server?
� Well, no.

How do TCP applications learn about “fatal errors”?How do TCP applications learn about “fatal errors”?
� write(server, “query\n”, 6) ⇒ -1
� read(server, answerbuf, sizeof (answerbuf)) ⇒ -1
� errno says...

� ETIMEDOUT, ECONNRESET, ENETDOWN, EHOSTDOWN,
EHOSTUNREACH

How do UDP applications learn about “fatal errors”?How do UDP applications learn about “fatal errors”?
� maybe just silence!
� maybe read()/write() errors as with TCP (see “ICMP”)

– 22 – 15-441

Common Byte Stream Flows
Data TransferData Transfer

� Application wants to transfer
a lot of bytes from one
machine to another:

�

ApproachApproach
� Break into smaller segments
� Send in succession

� Reassemble at other end

Request/ResponseRequest/Response
� Interactive application

involves exchange of short
messages between two
hosts

ApproachApproach
� Send each message as

separate packet

– 23 – 15-441

TCP's Jobs
Reliable bi-directional byte streamReliable bi-directional byte stream

Connections established & torn downConnections established & torn down

Multiplexing/demultiplexingMultiplexing/demultiplexing

Error controlError control

End-to-end flow controlEnd-to-end flow control

[Congestion avoidance][Congestion avoidance]

– 24 – 15-441

TCP's Jobs – In 20 bytes...
Reliable bi-directional byte streamReliable bi-directional byte stream

Connections established & torn downConnections established & torn down
� Analogy: setting up & terminating phone

call

Multiplexing/ demultiplexingMultiplexing/ demultiplexing
� Ports at both ends

Error controlError control
� Users see correct, ordered byte

sequences

End-end flow controlEnd-end flow control
� Avoid overwhelming machines at each

end

Congestion avoidanceCongestion avoidance
� Avoid creating traffic jams within network

Source Port Dest. Port

Data Sequence #

Acknowledgment Sequence #

HL/Flags Window

D. Checksum Urgent Pointer

Options..

– 25 – 15-441

Connection Life Cycle

Choosing portsChoosing ports

Establishing connectionEstablishing connection

Transmitting dataTransmitting data

Tearing down connectionTearing down connection

– 26 – 15-441

Choosing Ports

“Well-known ports” used for many applications“Well-known ports” used for many applications
� Mail servers listen on

� Port 25 – SMTP (Simple Mail Transfer Protocol)
� Port 110 – POP3 (Post Office Protocol, v3)
� Port 143 – IMAP (Internet Mail Access Protocol)

� See “/etc/services” on a Unix machine

Random port numbers used by “clients”Random port numbers used by “clients”
� If you don't bind() before you connect(), kernel gives you an

“arbitrary” port number

TCP connection defined by 4-tupleTCP connection defined by 4-tuple
� (IP1, Port1, IP2, Port2)

� (dsl093-172-091.pit1.dsl.speakeasy.net, 4093,
� piper.nectar.cs.cmu.edu, 22)

– 28 – 15-441

TCP Flags
SYN: Synchronize

� Used when setting up connection

FIN: Finish
� Used when tearing down connection

RESET
� I'm lost. Need to abort connection

PUSH
� Signal from sending application

� Deliver bytes preceding this one now (don't buffer)

URG: Urgent
� Segment includes “urgent” data

ACK
� Acknowledging received data

– 29 – 15-441

Establishing Connection

Three-Way HandshakeThree-Way Handshake
� Each side notifies other of starting sequence number it will

use for sending
� Each side acknowledges other's sequence number

� SYN-ACK: Acknowledge sequence number + 1
� “Piggy-back” second SYN with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

– 30 – 15-441

TCP Session Example

Use windump to trace typical TCP sessionUse windump to trace typical TCP session

ClientClient
� 128.2.222.198:3123
� Randy Bryant's laptop BRYANT-TP2.VLSI using ephemeral

port

ServerServer
� 192.216.219.96:80
� Web server at ceiva.com

TaskTask
� Upload digital image to server

– 31 – 15-441

TCP Connection Setup Example

Client SYNClient SYN
� SeqC: Seq. #4019802004, window 65535, max. seg. 1260

Server SYN-ACK+SYNServer SYN-ACK+SYN
� Receive: #4019802005 (= SeqC+1)
� SeqS: Seq. #3428951569, window 5840, max. seg. 1460

Client SYN-ACKClient SYN-ACK
� Receive: #3428951570 (= SeqS+1)

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S
 4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S
 3428951569:3428951569(0) ack 4019802005 win 5840 <mss
1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack
 3428951570 win 65535 (DF)

– 32 – 15-441

Sequence: ≥ 3428951569
Window: 65535
Max. Segment: 1260

Connection Created
Client

128.2.222.198:3123
Server

192.216.219.96:80

Sequence: ≥ 4019802004
Window: 5840
Max. Segment: 1460

Sequence:
Window:
Max. Segment:

Sequence:
Window:
Max. Segment:

– 33 – 15-441

TCP State Diagram: Connection
Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN
snd ACK

Client

Server

– 34 – 15-441

Handshake – Why So Complicated?

Both sides specify a 32-bit sequence numberBoth sides specify a 32-bit sequence number
� Why can't they just both start with zero?

Recall IP's TTL fieldRecall IP's TTL field
� TTL Max = 255
� Originally expected to be 255 seconds !
� Reinterpreted to be 255 hops
� What happens if a really old packet arrives?

� Old connection: IP 1, Port 1, IP2, Port 2, [Seq1], [Seq 2]
� Which of those will be the same for a new connection?
� Can you guess how sequence numbers should be chosen?

– 35 – 15-441

Transmitting Data
Both sides may send dataBoth sides may send data

� Really two byte streams

“Free-form” acks“Free-form” acks
� Need not Ack every Data
� Sometimes Ack repeatedly
� Complicated!!

� Not for today

A B
Data

ACK

ACK

Data

Data

Data

ACK

– 36 – 15-441

Tearing Down Connection
Either side can initiate teardownEither side can initiate teardown

� Send FIN signal
� “I'm FINished sending”

Other side typically agreesOther side typically agrees
� >>> QUIT
� <<< 220 Goodbye
� Both sides FIN
� Kernels sort things out

A B
FIN, SeqA

ACK, SeqA+1

ACK, SeqB+1

FIN, SeqB

– 37 – 15-441

Byte Counting
TCP sequence numbers count TCP sequence numbers count

bytesbytes , not packets, not packets

Good newsGood news
� More-efficient retransmissions

Bad newsBad news
� More-complicated receiver

processing
� Must deliver each byte to user

exactly once!
� Similar to IP fragment

reassembly

A B
abc

ACK

abcdef

ACK

– 38 – 15-441

To Nagle or not to Nagle?

Problem (Nagle, RFC 896, 1984)Problem (Nagle, RFC 896, 1984)
� Sending a TCP packet when a user types one character

considered harmful
� 1 byte of data, 40 bytes of header...4000% overhead
� Cost of processing a packet at a router has large fixed

component (same for big & small packets)
� Already-busy network may be driven to “congestion

collapse”

ApproachApproach
� write() shouldn't always send a packet
� Sometimes TCP sender should buffer data w/o sending
� Old solution: buffer for some amount of time (e.g., 200 ms)
� Problem: hard to set the threshold one way for everybody

– 39 – 15-441

To Nagle or not to Nagle?

Suggestion (Nagle, RFC 896, 1984)Suggestion (Nagle, RFC 896, 1984)
� When new bytes arrive from user program, examine TCP

transmit status
� If you are still waiting for an Ack for some data, buffer the

bytes, send the next time you send something anyway
� Typically you'll send stuff next when you get the next Ack

� Otherwise, connection was idle, may as well send

ResultsResults
� Dramatic decrease in number of tiny packets
� Annoying for some borderline connection latencies

Who cares?Who cares?
� Easy to do with byte-oriented protocol, hard if packet-based

– 40 – 15-441

Socket API versus TCP design

SocketsSockets
� Socket(), Bind(), Connect(), Accept(), ...

TCP specTCP spec
� “Passive Open”, “Active Open”

Typical patternsTypical patterns
� Server - “Passive open”

� Socket(), Bind(), Listen(), Accept(), Read()/Write(), Close()
� Client - “Active open”

� Socket(), [Bind()], Connect(), Read()/Write(), Close()

– 41 – 15-441

Socket API versus TCP design

SocketsSockets
� Socket(), Bind(), Connect(), Accept(), ...

TCP specTCP spec
� “Passive Open”, “Active Open”

Typical patternsTypical patterns
� Server - “Passive open”

� Socket(), Bind(), Listen(), Accept(), Read()/Write(), Close()
� Client - “Active open”

� Socket(), [Bind()], Connect(), Read()/Write(), Close()
� “Peer to peer”!

� Socket(), Bind(), Connect(), Read()/Write(), Close()
� TCPs must be able to match Connect() against Connect()
� Not required for 15-441 P3 (and not always implemented!!)

– 42 – 15-441

Socket API versus TCP design

Design issuesDesign issues
� Complex relationship between system calls, TCP operations

� Socket() “doesn't do anything”
� Socket(), Bind(), Listen(), Accept() - send no packets!
� Accept(), Connect() - can take quite a while
� Write()

� Sometimes puts caller to sleep (why?)
� Sometimes sends a packet (why not??)

� Packet transmission
� May be triggered by Write()
� May be triggered by receiving a packet from network layer
� May be triggered by “something else” (what?)

� This isn't like UDP
� Suggestion: read text & RFC now (until this slide makes

sense)

– 43 – 15-441

Summary

What's a Transport Protocol?What's a Transport Protocol?
� Internet architectural history reminder

� TCP/UDP split
� UDP and applications
� TCP overview

