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Summary:
Closed Loop Congestion Control

Bottleneck

e How does the network apply back pressure?
» Dropped packets signal congestion

e How do the sources adapt?
» Additive Increase Multiplicative Decrease (AIMD)

e How does the switch distribute link bandwidth?
» FIFO queueing
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TCP Congestion Control
Open Questions

e How can congestion control be implemented?
» Operating system timers are very coarse —how do you
accurately calculate the transmission rate?
e How does TCP know what is a good initial
rate to start with?
» Should work both for a CDPD (10s of Kbs or less) and for
supercomputer links (2.4 Gbs and growing)
e Can we avoid the high overheads associated
with the timeouts that detect packet loss?
» Packet loss will be periodic
» Timeouts are expensive!
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Outline of the

“Transport Lectures”
_ e e __—_—__—_—_—_—_—_—_—_—_—_—_————

e Transport protocols introduction.

» Functions, UDP
e Flow and error control.

» Stop and go, go back N, sliding window, ...
e TCP.

» Connections, flow control, error handling, extensions, ...
e Congestion control.

» Congestion definition, congestion control strategies
e Congestion control in TCP.

» More TCP, applied congestion control
e Other transports.

» RPC, TCP conformance, multimedia

Peter A Stcenke, SCS, CMU 2

TCP Congestion Control

e Packet loss is seen as sign of congestion and
results in a multiplicative rate decrease
» Factor of 2

e TCP periodically probes for available
bandwidth by increasing its rate.

Time ,

Rate
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TCP Congestion Control

Implementation
_—_,

e Implemented using a congestion window that
limits how much data can be in the network.
» Rate = data in transit / roundtrip time
e Data can only be sent when the amount of
outstanding data is less than the congestion
window.

» The amount of outstanding data is increased on a “send”
and decreased on “ack” — packet conservation

» (last sent — last acked) < congestion window

Cong Window Size
Roundtrip Time

e Congestion window is similar to the end-end
flow control window.
» (last sent —last window update) < receiver window

Throughput <
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End-to-End Flow Control:
View at the Sender
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Slow start

e At startup, no information is available about the
congestion state of the network.
» Sending the full flow control window would flood the
switches and result in severe packet loss
e Slow start quickly probes for a good window.
» Additional counter that limits number of packets in network
» Initialized to 1
» Incremented on each ack: results in exponential increase in
traffic - not so slow at all!
o After packet losses and a timeout, TCP drops
into (oscillating) steady state.

» During slow start, TCP remembers the congestion window
size before losses occurred and uses that as an initial

congestion window

11
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TCP Packet Pacing

e Congestion window helps to “pace” the
transmission of data packets.
e In steady state, a packet is sent when an ack

is received.
» Data transmission remains smooth, once it is smooth

» Self-clocking behavior
. L L ] ] ] .
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Slow Start also Starts
Packet Pacing

e Slow start initiates the self-
clocking behavior of TCP.
» Sender sends one packet
» Receives an ack and sends two
packets

» Packets will be separated on
the bottleneck link, resulting in
separate acks

» Sender sends two packets in
response to each ack, ...
e Slow start also used after
timeout when pipeline has
drained.

» but only up to old congestion
window
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Fast Retransmit and
Fast Recovery

e Timeouts are very expensive.
» Timeout itself is long
» Pipe drains - have to go through slow start again
» Congestion window is cut in half

e Lost packets can sometimes be detected
without timeout by checking for duplicate acks.
» Receiver sends ack for every packet it receives
» A packet loss results in the same packet being acked again

e After 3 duplicate acks sender retransmits packet
without waiting for a timeout.
» Fast retransmit: retransmit the missing packet immediately
» Fast recovery: skip slow start

— Transmission pipeline has not drained so there is no
need to start up the self-clocking process

— But congestion window is still cut in half —why?
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TCP Variants

e TCP Tahoe (distributed with 4.3BSD Unix)
» Original implementation of Van Jacobson’'s mechanisms

» Includes: Slow start, Congestion avoidance, Fast
retransmit

e TCP Reno (1990): Tahoe + more
» Addition of fast-recovery
» Delayed acks
» Header prediction: inline common case
» With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements
e TCP NewReno: Reno + modified fast recovery

» Helps with “long fat pipes” — multiple packet losses per
window are more likely

» Even better: selective acknowledgements

Pete A, Seeriise, SCS, CMU 17

Starting of Packet Pacing
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TCP Saw Tooth Behavior
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Multiple Losses

— Now what?
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When to Send a Packet?

e End-to-end flow control.
» avoid buffer overflow on receiver
» only send data if there is room in the receiver window

e Congestion control.
» estimates amount of data that can be in the network
» only send if data fits in the congestion window
» during slow start: additional counter counts packets in
the pipe
e Efficiency considerations.

» only send data if there is sufficient data, or if there is no
unacknowledged data

— unless Nagle is disabled
» piggybacking of acks (on the receiver)
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Why Does TCP Work?

e Cooperating users.
» As opposed to (bad) competing users
» End-points that respond correctly to network feedback
» No need for enforcement
» But, what happens if a user does not cooperate?
e Common end points.
» As opposed to diverse applications
» Results in predictable response (i.e. as in TCP)
» But, there is a fair bit of diversity in practice
o Informal service definition.

» As opposed to precise service specifications demanded
by paying customers

» Does not require quantitative commitment (best effort!)
» But, some users would prefer more predictable service
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TCP Fairness Issues

e Multiple TCP flows sharing the same bottleneck
link do not necessarily get the same bandwidth.

» Factors such as roundtrip time, small differences in timeouts,
and start time, ... affect how bandwidth is shared

» The bandwidth ratio typically does stabilize
e Modifying the congestion control implementation
changes the aggressiveness of TCP and will
change how much bandwidth a source gets.
» Affects “fairness” relative to other flows
» Changing timeouts, dropping or adding features, ..
e Users can grab more bandwidth by using parallel
flows.

» Each flow gets a share of the bandwidth to the user gets more
bandwidth than users who use only a single flow
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Random Early Detection
(RED)

e Start randomly dropping
packets before queue is full. P
» Some flows will observe a single
packet loss and slow down,
hopefully avoiding queue overflow I -

» High bandwidth users are more
likely to have a packet dropped
than low bandwidth users

» Queue can still accommodate
bursts of packets
e Improves overall network
performance by avoiding that 0
queues stay full.

Averaged
» Congestion avoidance Queue size
» How do you set the thresholds?
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TCP Performance Issues

e Consistently full queues can degrade TCP
performance.
» Lock out some of the sessions

» Synchronization of TCP sessions due to the dropping of
bursts of packets

» Increased queueing delay
o Not all users sharing a bottleneck link get the
same bandwidth.
» Can be considered to be unfair
e Malicious users can grab more bandwidth by
modifying TCP or by using UDP.

» Again a fairness issue
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