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Outline of the 
“Transport Lectures”

Transport protocols introduction.
» Functions, UDP

Flow and error control.
» Stop and go, go back N, sliding window, ...

TCP.
» Connections, flow control, error handling, extensions, …

Congestion control.
» Congestion definition, congestion control strategies

Congestion control in TCP.
» More TCP, applied congestion control

Other transports.
» RPC, TCP conformance, multimedia
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Summary:
Closed Loop Congestion Control

How does the network apply back pressure?
» Dropped packets signal congestion

How do the sources adapt?
» Additive Increase Multiplicative Decrease (AIMD)

How does the switch distribute link bandwidth?
» FIFO queueing
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Bottleneck
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TCP Congestion Control

Packet loss is seen as sign of congestion and 
results in a multiplicative rate decrease 

» Factor of 2

TCP periodically probes for available 
bandwidth by increasing its rate.

Time

Rate
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TCP Congestion Control
Open Questions

How can congestion control be implemented?
» Operating system timers are very coarse – how do you 

accurately calculate the transmission rate?

How does TCP know what is a good initial 
rate to start with?

» Should work both for a CDPD (10s of Kbs or less) and for 
supercomputer links (2.4 Gbs and growing)

Can we avoid the high overheads associated 
with the timeouts that detect packet loss?

» Packet loss will be periodic
» Timeouts are expensive!
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TCP Congestion Control
Implementation

Implemented using a congestion window that 
limits how much data can be in the network.

» Rate = data in transit / roundtrip time
Data can only be sent when the amount of 
outstanding data is less than the congestion 
window.

» The amount of outstanding data is increased on a “send”
and decreased on “ack” – packet conservation

» (last sent – last acked) < congestion window

Congestion window is similar to the end-end 
flow control window.

» (last sent – last window update) < receiver window

Throughput < Cong Window Size
Roundtrip Time
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End-to-End Flow Control: 
View at the Sender

acknowledged sent to be sent outside window

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Packet Sent Packet Received

App write
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TCP Saw Tooth Behavior
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Congestion Avoidance 
Sequence Plot
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TCP Packet Pacing

Congestion window helps to “pace” the 
transmission of data packets.
In steady state, a packet is sent when an ack
is received.

» Data transmission remains smooth, once it is smooth
» Self-clocking behavior
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Slow start

At startup, no information is available about the 
congestion state of the network. 

» Sending the full flow control window would flood the 
switches and result in severe packet loss 

Slow start quickly probes for a good window.
» Additional counter that limits number of packets in network
» Initialized to 1
» Incremented on each ack: results in exponential increase in 

traffic - not so slow at all!
After packet losses and a timeout, TCP drops 
into (oscillating) steady state.

» During slow start, TCP remembers the congestion window 
size before losses occurred and uses that as an initial 
congestion window
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Slow Start Sequence Plot
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Slow Start also Starts 
Packet Pacing

Slow start initiates the self-
clocking behavior of TCP.

» Sender sends one packet
» Receives an ack and sends two 

packets
» Packets will be separated on 

the bottleneck link, resulting in 
separate acks

» Sender sends two packets in 
response to each ack, ...

Slow start also used after 
timeout when pipeline has 
drained.

» but only up to old congestion 
window
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Starting of Packet Pacing
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Fast Retransmit and
Fast Recovery

Timeouts are very expensive.
» Timeout itself is long
» Pipe drains - have to go through slow start again
» Congestion window is cut in half

Lost packets can sometimes be detected 
without timeout by checking for duplicate acks.

» Receiver sends ack for every packet it receives
» A packet loss results in the same packet being acked again

After 3 duplicate acks sender retransmits packet 
without waiting for a timeout.

» Fast retransmit: retransmit the missing packet immediately
» Fast recovery: skip slow start 

– Transmission pipeline has not drained so there is no 
need to start up the self-clocking process

– But congestion window is still cut in half – why?
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TCP Saw Tooth Behavior
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TCP Variants

TCP Tahoe (distributed with 4.3BSD Unix)
» Original implementation of Van Jacobson’s mechanisms
» Includes: Slow start, Congestion avoidance, Fast 

retransmit

TCP Reno (1990): Tahoe + more
» Addition of fast-recovery 
» Delayed acks
» Header prediction: inline common case
» With multiple losses, Reno typically timeouts because it 

does not see duplicate acknowledgements

TCP NewReno: Reno + modified fast recovery
» Helps with “long fat pipes” – multiple packet losses per 

window are more likely 
» Even better: selective acknowledgements

Peter A. Steenkiste, SCS, CMU 18

Multiple Losses
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Reno
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New Reno
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SACK 
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When to Send a Packet?

End-to-end flow control.
» avoid buffer overflow on receiver
» only send data if there is room in the receiver window

Congestion control.
» estimates amount of data that can be in the network
» only send if data fits in the congestion window
» during slow start: additional counter counts packets in 

the pipe
Efficiency considerations.

» only send data if there is sufficient data, or if there is no 
unacknowledged data

– unless Nagle is disabled
» piggybacking of acks (on the receiver)
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Why Does TCP Work?

Cooperating users.
» As opposed to (bad) competing users
» End-points that respond correctly to network feedback
» No need for enforcement
» But, what happens if a user does not cooperate?

Common end points.
» As opposed to diverse applications
» Results in predictable response (i.e. as in TCP)
» But, there is a fair bit of diversity in practice

Informal service definition.
» As opposed to precise service specifications demanded 

by paying customers
» Does not require quantitative commitment (best effort!)
» But, some users would prefer more predictable service
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TCP Fairness Issues

Multiple TCP flows sharing the same bottleneck 
link do not necessarily get the same bandwidth.

» Factors such as roundtrip time, small differences in timeouts, 
and start time, … affect how bandwidth is shared

» The bandwidth ratio typically does stabilize
Modifying the congestion control implementation 
changes the aggressiveness of TCP and will 
change how much bandwidth a source gets.

» Affects “fairness” relative to other flows
» Changing timeouts, dropping or adding features, ..

Users can grab more bandwidth by using parallel 
flows.

» Each flow gets a share of the bandwidth to the user gets more 
bandwidth than users who use only a single flow
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TCP Performance Issues

Consistently full queues can degrade TCP 
performance.

» Lock out some of the sessions
» Synchronization of TCP sessions due to the dropping of 

bursts of packets
» Increased queueing delay

Not all users sharing a bottleneck link get the 
same bandwidth.

» Can be considered to be unfair
Malicious users can grab more bandwidth by 
modifying TCP or by using UDP.

» Again a fairness issue
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Random Early Detection
(RED)

Start randomly dropping 
packets before queue is full.

» Some flows will observe a single 
packet loss and slow down, 
hopefully avoiding queue overflow

» High bandwidth users are more 
likely to have a packet dropped 
than low bandwidth users

» Queue can still accommodate 
bursts of packets

Improves overall network 
performance by avoiding that 
queues stay full.

» Congestion avoidance
» How do you set the thresholds?
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