
Page 1

Peter A. Steenkiste, SCS, CMU 1

Lecture 20
TCP Congestion Control

Peter Steenkiste
Department of Computer Science and 
Electrical and Computer Engineering

Carnegie Mellon University

15-441 Networking, Spring 2006
http://www.cs.cmu.edu/~prs/15-441

Peter A. Steenkiste, SCS, CMU 2

Outline of the 
“Transport Lectures”

Transport protocols introduction.
» Functions, UDP

Flow and error control.
» Stop and go, go back N, sliding window, ...

TCP.
» Connections, flow control, error handling, extensions, …

Congestion control.
» Congestion definition, congestion control strategies

Congestion control in TCP.
» More TCP, applied congestion control

Other transports.
» RPC, TCP conformance, multimedia

Peter A. Steenkiste, SCS, CMU 3

Summary:
Closed Loop Congestion Control

How does the network apply back pressure?
» Dropped packets signal congestion

How do the sources adapt?
» Additive Increase Multiplicative Decrease (AIMD)

How does the switch distribute link bandwidth?
» FIFO queueing

A

B

C

D

Bottleneck

Peter A. Steenkiste, SCS, CMU 4

TCP Congestion Control

Packet loss is seen as sign of congestion and 
results in a multiplicative rate decrease 

» Factor of 2

TCP periodically probes for available 
bandwidth by increasing its rate.

Time

Rate

Peter A. Steenkiste, SCS, CMU 5

TCP Congestion Control
Open Questions

How can congestion control be implemented?
» Operating system timers are very coarse – how do you 

accurately calculate the transmission rate?

How does TCP know what is a good initial 
rate to start with?

» Should work both for a CDPD (10s of Kbs or less) and for 
supercomputer links (2.4 Gbs and growing)

Can we avoid the high overheads associated 
with the timeouts that detect packet loss?

» Packet loss will be periodic
» Timeouts are expensive!

Peter A. Steenkiste, SCS, CMU 6

TCP Congestion Control
Implementation

Implemented using a congestion window that 
limits how much data can be in the network.

» Rate = data in transit / roundtrip time
Data can only be sent when the amount of 
outstanding data is less than the congestion 
window.

» The amount of outstanding data is increased on a “send”
and decreased on “ack” – packet conservation

» (last sent – last acked) < congestion window

Congestion window is similar to the end-end 
flow control window.

» (last sent – last window update) < receiver window

Throughput < Cong Window Size
Roundtrip Time



Page 2

Peter A. Steenkiste, SCS, CMU 7

End-to-End Flow Control: 
View at the Sender

acknowledged sent to be sent outside window

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Packet Sent Packet Received

App write

Peter A. Steenkiste, SCS, CMU 8

TCP Saw Tooth Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back 

Bandwidth

Cut
Congestion

Window
and Rate

Peter A. Steenkiste, SCS, CMU 9

Congestion Avoidance 
Sequence Plot

Time

Sequence No

Packets

Acks

Peter A. Steenkiste, SCS, CMU 10

TCP Packet Pacing

Congestion window helps to “pace” the 
transmission of data packets.
In steady state, a packet is sent when an ack
is received.

» Data transmission remains smooth, once it is smooth
» Self-clocking behavior

Peter A. Steenkiste, SCS, CMU 11

Slow start

At startup, no information is available about the 
congestion state of the network. 

» Sending the full flow control window would flood the 
switches and result in severe packet loss 

Slow start quickly probes for a good window.
» Additional counter that limits number of packets in network
» Initialized to 1
» Incremented on each ack: results in exponential increase in 

traffic - not so slow at all!
After packet losses and a timeout, TCP drops 
into (oscillating) steady state.

» During slow start, TCP remembers the congestion window 
size before losses occurred and uses that as an initial 
congestion window

Peter A. Steenkiste, SCS, CMU 12

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks



Page 3

Peter A. Steenkiste, SCS, CMU 13

Slow Start also Starts 
Packet Pacing

Slow start initiates the self-
clocking behavior of TCP.

» Sender sends one packet
» Receives an ack and sends two 

packets
» Packets will be separated on 

the bottleneck link, resulting in 
separate acks

» Sender sends two packets in 
response to each ack, ...

Slow start also used after 
timeout when pipeline has 
drained.

» but only up to old congestion 
window

Peter A. Steenkiste, SCS, CMU 14

Starting of Packet Pacing

Peter A. Steenkiste, SCS, CMU 15

Fast Retransmit and
Fast Recovery

Timeouts are very expensive.
» Timeout itself is long
» Pipe drains - have to go through slow start again
» Congestion window is cut in half

Lost packets can sometimes be detected 
without timeout by checking for duplicate acks.

» Receiver sends ack for every packet it receives
» A packet loss results in the same packet being acked again

After 3 duplicate acks sender retransmits packet 
without waiting for a timeout.

» Fast retransmit: retransmit the missing packet immediately
» Fast recovery: skip slow start 

– Transmission pipeline has not drained so there is no 
need to start up the self-clocking process

– But congestion window is still cut in half – why?

Peter A. Steenkiste, SCS, CMU 16

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast 
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

Peter A. Steenkiste, SCS, CMU 17

TCP Variants

TCP Tahoe (distributed with 4.3BSD Unix)
» Original implementation of Van Jacobson’s mechanisms
» Includes: Slow start, Congestion avoidance, Fast 

retransmit

TCP Reno (1990): Tahoe + more
» Addition of fast-recovery 
» Delayed acks
» Header prediction: inline common case
» With multiple losses, Reno typically timeouts because it 

does not see duplicate acknowledgements

TCP NewReno: Reno + modified fast recovery
» Helps with “long fat pipes” – multiple packet losses per 

window are more likely 
» Even better: selective acknowledgements

Peter A. Steenkiste, SCS, CMU 18

Multiple Losses

Time

Sequence No
Duplicate Acks

Retransmission
X

X

XX

Now what?

Packets

Acks



Page 4

Peter A. Steenkiste, SCS, CMU 19
Time

Sequence No
X

X

XX

Tahoe

Packets

Acks

Peter A. Steenkiste, SCS, CMU 20

Reno

Time

Sequence No
X

X

XX

Now what? - timeout

Packets

Acks

Peter A. Steenkiste, SCS, CMU 21

New Reno

Time

Sequence No
X

X

XX

Packets

Acks

Peter A. Steenkiste, SCS, CMU 22

SACK 

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

Packets

Acks

Peter A. Steenkiste, SCS, CMU 23

When to Send a Packet?

End-to-end flow control.
» avoid buffer overflow on receiver
» only send data if there is room in the receiver window

Congestion control.
» estimates amount of data that can be in the network
» only send if data fits in the congestion window
» during slow start: additional counter counts packets in 

the pipe
Efficiency considerations.

» only send data if there is sufficient data, or if there is no 
unacknowledged data

– unless Nagle is disabled
» piggybacking of acks (on the receiver)

Peter A. Steenkiste, SCS, CMU 24

Why Does TCP Work?

Cooperating users.
» As opposed to (bad) competing users
» End-points that respond correctly to network feedback
» No need for enforcement
» But, what happens if a user does not cooperate?

Common end points.
» As opposed to diverse applications
» Results in predictable response (i.e. as in TCP)
» But, there is a fair bit of diversity in practice

Informal service definition.
» As opposed to precise service specifications demanded 

by paying customers
» Does not require quantitative commitment (best effort!)
» But, some users would prefer more predictable service



Page 5

Peter A. Steenkiste, SCS, CMU 25

TCP Fairness Issues

Multiple TCP flows sharing the same bottleneck 
link do not necessarily get the same bandwidth.

» Factors such as roundtrip time, small differences in timeouts, 
and start time, … affect how bandwidth is shared

» The bandwidth ratio typically does stabilize
Modifying the congestion control implementation 
changes the aggressiveness of TCP and will 
change how much bandwidth a source gets.

» Affects “fairness” relative to other flows
» Changing timeouts, dropping or adding features, ..

Users can grab more bandwidth by using parallel 
flows.

» Each flow gets a share of the bandwidth to the user gets more 
bandwidth than users who use only a single flow

Peter A. Steenkiste, SCS, CMU 26

TCP Performance Issues

Consistently full queues can degrade TCP 
performance.

» Lock out some of the sessions
» Synchronization of TCP sessions due to the dropping of 

bursts of packets
» Increased queueing delay

Not all users sharing a bottleneck link get the 
same bandwidth.

» Can be considered to be unfair
Malicious users can grab more bandwidth by 
modifying TCP or by using UDP.

» Again a fairness issue

Peter A. Steenkiste, SCS, CMU 27

Random Early Detection
(RED)

Start randomly dropping 
packets before queue is full.

» Some flows will observe a single 
packet loss and slow down, 
hopefully avoiding queue overflow

» High bandwidth users are more 
likely to have a packet dropped 
than low bandwidth users

» Queue can still accommodate 
bursts of packets

Improves overall network 
performance by avoiding that 
queues stay full.

» Congestion avoidance
» How do you set the thresholds?

Averaged
Queue size

P

0

1


