
Project 3 - TCP

Original slides - Aditya Ganjam

Rampaged through by – Dave Eckhardt

What you will implement …

• TCP state machine (connection setup /
teardown)

• Reliability

• In order-delivery

• Flow control

The Functions

• tcp_socket

• tcp_bind

• tcp_connect

• tcp_accept

• tcp_write

• tcp_read

• tcp_close

• tcp_input – packet acceptor

Connection Setup

Connection tear down

Timers (tcp_timer.c)

• Initial connect timer

• Retransmit timer

• Close timer

• timeout(timeout ftn, void *arg, int ticks);
– Setup a timer

• untimeout(timeout ftn, void *arg);
– Cancel a timer

Interface with Socket Layer
(Setup and Send)

Socket Layer

UDP | TCP

Application (1.. N)

Socket()

tcp_socket()

Socket.h

ksocket.c

Write()

tcp_write()

Create some
connection state

Create some
connection state

(tcpcb)

ip_output()

Send Buffer

tcp_send()

timer Receive ack

Connection Setup

Sending Packets

Interface with Socket Layer
(Receive)

Read()

Socket Layer

ip_input()

tcp_input(pbuf *pkt, ...)

Receive
Buffer

tcp_read(..., buf, len, ...)

Synchronization Fundamentals

Two Fundamental operations

⇒ Atomic instruction sequence

 Voluntary de-scheduling

Atomic instruction sequence

• Problem domain
� Short sequence of instructions
� Nobody else may interleave same

sequence
� or a "related" sequence

� “Typically” nobody is competing

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?

Non-interference in P3
• What you've already seen

– Can't queue two packets to a device at the
same time

• Other issues
– Can't allow two processes to bind port 99 at

the same time
• Would scramble your port ⇔ socket data

structure

Non-Interference –
Observations

• Instruction sequences are “short”
� Ok to force competitors to wait

• Probability of collision is "low"

Synchronization Fundamentals

Two Fundamental operations

 Atomic instruction sequence

 ⇒ Voluntary de-scheduling

Voluntary de-scheduling

• Problem domain
� “Are we there yet?”
� “Waiting for Godot”

• Example - "Sim City" disaster daemon
while (date < 1906-04-18) cwait(date);
while (hour < 5) cwait(hour);
for (i = 0; i < max_x; i++)

 for (j = 0; j < max_y; j++)

 wreak_havoc(i,j);

Voluntary de-scheduling
• Anti-atomic

� We want to be “interrupted”

• Making others wait is wrong
� Wrong for them – we won't be ready for a

while
� Wrong for us – we can't be ready until they

progress

• We don't want exclusion

• We want others to run - they enable us

Voluntary de-scheduling

• Wait pattern
 LOCK WORLD

 while (!(ready = scan_world())){

 UNLOCK WORLD

 WAIT_FOR(progress_event)

 }

• Your partner-competitor will� SIGNAL(progress_event)

Brief Mutual Exclusion

MUTEX_LOCK(sock->mutex);
sock->state = ...
MUTEX_UNLOCK(sock->mutex);

Blocking / Unblocking

MUTEX_LOCK(sock->mutex);

while (sock->state ...) {

 COND_WAIT(&sock->ready, &sock->mutex)

 }

sock->state = ...

MUTEX_UNLOCK(sock->mutex);

– COND_WAIT() will drop the mutex, wait until a
COND_SIGNAL() is called on the condition
variable, and will re-lock the mutex

Blocking Example
Write()

Lock(socket)

While (send window is full)

 Wait(out_avail, socket)

Copy data...

Enqueue...

Unlock(socket)

Trigger transmit

tcp_write()

ACK ip_input() tcp_input()

Lock(socket)

ACK ⇒ delete 1 pbuf

Signal(out_avail)

Unlock(socket)

Trigger transmit

Warning: “Deadlock”
• A deadlock is...

– A group of threads/processes...

– Each one waiting for something...

– Held by another one of the
threads/processes

• How to get one
– A: lock(socket_list); lock(socket_list[3]);

– B: lock(socket_list[3]); lock(socket_list);

– Now things get quiet for a while

Strategy

• Project handout includes suggested plan of attack

– We really think it will help

• You probably haven't written code like this before

– Asynchronous, state-machine, ...

• Please dive in early!

