
15-451 Algorithms, Fall 2008

Homework # 3 due: Tuesday October 7, 2008

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

(25 pts) 1. Hashing. As discussed in class, the notion of universal hashing gives us guarantees
that hold for arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash
function. In this problem, you will work out what some of these guarantees are.

(a) Describe an explicit universal hash function family from U = {0, 1, 2, 3, 4, 5, 6, 7}
to {0, 1}. Hint: you can do this with a set of 4 functions.

(b) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S ⊆ U be a set of m elements we wish to hash. Prove that if we
choose h from H at random, the expected number of pairs (x, y) in S that collide
is ≤ m−1

2
.

(c) Prove that with probability at least 3/4, no bin gets more than 1+2
√

m elements.
Hint: use part (b).

To solve this question, you should use “Markov’s inequality”. Markov’s inequality
is a fancy name for a pretty obvious fact: if you have a non-negative random
variable X with expectation E[X], then for any k > 0, Pr(X > kE[X]) ≤ 1/k.
For instance, the chance that X is more that 100 times its expectation is at
most 1/100. You can see that this has to be true just from the definition of
“expectation”.

(25 pts) 2. Doing more with search trees. Often, by adding extra information to the nodes of
a binary search tree, it is possible to perform other operations you might be interested
in. In particular, suppose we want to be able to do the following operations efficiently:

• Given k, output the kth smallest element (let’s assume all keys are distinct).

• Given a key x, do a version of lookup(x) that tells us the rank of x (how many
keys are smaller than x).

Note that if we had a fixed set of data, this would be easy: we just make a sorted
array. If we are asked to produce the kth smallest element, we just output A[k]. To
get the rank of x, we just do binary search to find it, and then output which location
it’s in.

How could we do this with search trees, if we want to do inserts too? In particular,
describe a piece of additional information you could store at each node of the search
tree such that:

(1) it allows us to perform the above operations in time O(depth of tree).

(2) the values can be maintained efficiently (time proportional to the depth
of the tree) when a new node is inserted.

For example, a bad way of solving the problem would be to have each node store the
rank of its key. This is bad because if you insert a new key that is smaller than
everything else, you may have to update everyone’s rank, so we don’t have property
(2). For this problem you should:

(a) Describe the extra information you will store at each node of the tree.

(b) Describe how you can use this to find the kth smallest element efficiently, and
how you can use this to find the rank of a given key efficiently.

(c) Describe how the information can be updated efficiently when a new node is
inserted into the tree. (You can assume for this that we are doing simple binary
search tree insertion, though if you like you can also describe how it is updated
when rotations are performed).

(25 pts) 3. The List-Update Problem. Suppose we have n data items x1, x2, . . . , xn that we
wish to store in a linked list in some order. Let’s say the cost for performing a lookup(x)
operation is $1 if x is in the head of the list, $2 if x is the second element in the list,
and so on.

For instance, say there are 4 items and it turns out that we end up accessing x1 3
times, x2 5 times, x3 once, and x4 twice. In this case, in hindsight, the best ordering
for a linked list would have been (x2, x1, x4, x3) with a total cost of $21.

The Move-to-Front (MTF) strategy is the following algorithm for organizing the list
if we don’t know in advance how many times we will access each element. We begin
with the elements in their initial order (x1, x2, . . . , xn). Then, whenever we perform a
lookup(x) operation, we move the item accessed to the front of the list. Let us say that
performing the movement is free. For instance, if the first operation was lookup(x3),
then we pay $3, and afterwards the list will look like (x3, x1, x2, x4 . . .).

(a) Suppose n = 4 and we use MTF starting from the order (x1, x2, x3, x4). If we
perform the following 4 operations:

lookup(x4), lookup(x2), lookup(x4), lookup(x2).

What does the list look like in the end and what was the total cost?

(b) Your job is to prove that the total cost of the MTF algorithm on a sequence of
m operations (think of m as much larger than n) is at most 2Cstatic + n2 where
Cstatic is the cost of the best static list in hindsight for those m operations (like
in our first example). We will prove this in two steps.

i. First prove the somewhat easier statement that the cost of Move-to-Front is at
most 2Cinitial where Cinitial is the cost of the original ordering (x1, x2, . . . , xn).

2

Hint: If i < j but xj is in front of xi in the MTF list, let’s say that xj has
“cut in line” in front of xi. Now, imagine that each element xi has a piggy
bank with $1 for everyone that is currently cutting in line in front of it.

ii. Now prove the 2Cstatic + n2 bound.

Note: one nice use of this is for data compression. You store each ascii character in a
list in this way, and then when reading a string of text, for each character you output its
index i in the list before moving the character to the front (this requires only O(log i)
bits, which will be small if the item was close to the front of the list).

(25 pts) 4. BSTs and dynamic programming. Consider a binary search tree storing a set of
keys x1 < x2 < x3 < . . . < xn. Let’s define the cost of handling a request for some key
to be the number of comparisions made in searching for it (1 plus the distance of the
node from the root of the tree). For example, if the root is requested, the cost is 1.

Given a particular sequence of requests, one can calculate the cost that would be
incurred on that sequence by different possible binary search trees. The tree that
attains the minimum cost is called the optimal binary search tree for that sequence.1

(a) For a fixed tree, the cost of a given sequence of requests clearly only depends on
the number of times each key is requested, not on their order. Suppose that n = 4
and that x1 is accessed once, x2 is accessed 9 times, x3 is accessed 5 times, and x4

is accessed 6 times. Find an optimal binary tree for this set of requests. (There
is more than one possible answer.)

(b) In general, suppose the optimal binary search tree for a given set of requests has
xi at the root, with L as its left subtree and R as its right subtree. Prove that L
must be an optimal binary search tree for the requests to elements x1, . . . , xi−1 and
R must be an optimal binary search tree for the requests to elements xi+1, . . . , xn.

(c) Give a general algorithm for constructing the optimal binary tree given a sequence
of counts c1, c2, . . . , cn (ci is the number of times xi is accessed). The running time
of your algorithm should be O(n3). Hint: use dynamic programming.

Note #1: the notion of an optimal binary search tree is a lot like the notion of a
Huffman tree, except that we also require the keys to be in search-tree order. This
requirement is the reason that the greedy Huffman-tree algorithm doesn’t work for
finding optimal BSTs.

Note #2: it’s actually possible to improve the running time to O(n2) by a simple
modification to this dynamic-programming solution. But proving correctness for this
faster version is very tricky.

1This is the exactly analogous to the “best static list in hindsight” in the previous problem. The big

difference is that for lists, the best static list in hindsight is very simple: you just put the most-requested

item in the front, then the next-most-requested, etc. For trees, computing the optimal binary search tree

will be more complicated, requiring dynamic programming, which is what this whole problem is about.

3

