
Lecture 6

Union-Find

6.1 Overview

In this lecture we describe the union-find problem. This is a problem that captures a key task one
needs to solve in order to efficiently implement Kruskal’s minimum-spanning-tree algorithm. We
then give two data structures for it with good amortized running time.

6.2 Motivation

To motivate the union-find problem, let’s recall Kruskal’s Algorithm for finding a minimum span-
ning tree (MST) in an undirected graph (see also Appendix B). Remember that an MST is a tree
that includes (i.e., spans) all the vertices and out of all such trees has the least total cost.

Kruskal’s Algorithm (recap):
Sort the edges in the given graph G by length and examine them from shortest to longest.
Put each edge into the current forest if it doesn’t form a cycle with the edges chosen so far.

We argue correctness in Appendix B. Today, our concern is running time. The initial step takes
time O(|E| log |E|) to sort. Then, for each edge, we need to test if it connects two different
components. If it does, we will insert the edge, merging the two components into one; if it doesn’t
(the two endpoints are in the same component), then we will skip this edge and go on to the next
edge. So, to do this efficiently we need a data structure that can support the basic operations of (a)
determining if two nodes are in the same component, and (b) merging two components together.
This is the union-find problem.

6.3 The Union-Find Problem

The general setting for the union-find problem is that we are maintaining a collection of disjoint
sets {S1, S2, . . . , Sk} over some universe, with the following operations:

MakeSet(x): create the set {x}.

24

6.4. DATA STRUCTURE 1 (LIST-BASED) 25

Union(x, y): replace the set x is in (let’s call it S) and the set y is in (let’s call it S′) with the
single set S ∪ S′.

Find(x): return the unique ID for the set containing x (this is just some representative element of
this set).

Given these operations, we can implement Kruskal’s algorithm as follows. The sets Si will be the
sets of vertices in the different trees in our forest. We begin with MakeSet(v) for all vertices v
(every vertex is in its own tree). When we consider some edge (v,w) in the algorithm, we just test
whether Find(v) equals Find(w). If they are equal, it means that v and w are already in the same
tree so we skip over the edge. If they are not equal, we insert the edge into our forest and perform
a Union(v,w) operation. All together we will do |V | MakeSet operations, |V | − 1 Unions, and 2|E|
Find operations.

Notation and Preliminaries: in the discussion below, it will be convenient to define n as the
number of MakeSet operations and m as the total number of operations (this matches the number
of vertices and edges in the graph up to constant factors, and so is a reasonable use of n and
m). Also, it is easiest to think conceptually of these data structures as adding fields to the items
themselves, so there is never an issue of “how do I locate a given element v in the structure?”.

6.4 Data Structure 1 (list-based)

Our first data structure is a simple one with a very cute analysis. The total cost for the operations
will be O(m + n log n).

In this data structure, the sets will be just represented as linked lists: each element has a pointer
to the next element in its list. However, we will augment the list so that each element also has a
pointer directly to head of its list. The head of the list is the representative element. We can now
implement the operations as follows:

MakeSet(x): just set x->head=x. This takes constant time.

Find(x): just return x->head. Also takes constant time.

Union(x, y): To perform a union operation we merge the two lists together, and reset the head
pointers on one of the lists to point to the head of the other.

Let A be the list containing x and B be the list containing y, with lengths LA and LB

respectively. Then we can do this in time O(LA + LB) by appending B onto the end of A as
follows. We first walk down A to the end, and set the final next pointer to point to y->head.
This takes time O(LA). Next we go to y->head and walk down B, resetting head pointers of
elements in B to point to x->head. This takes time O(LB).

Can we reduce this to just O(LB)? Yes. Instead of appending B onto the end of A, we can
just splice B into the middle of A, at x. I.e., let z=x->next, set x->next=y->head, then walk
down B as above, and finally set the final next pointer of B to z.

Can we reduce this to O(min(LA, LB))? Yes. Just store the length of each list in the head.
Then compare and insert the shorter list into the middle of the longer one. Then update the
length count to LA + LB .

6.5. DATA STRUCTURE 2 (TREE-BASED) 26

We now prove this simple data structure has the running time we wanted.

Theorem 6.1 The above algorithm has total running time O(m + n log n).

Proof: The Find and MakeSet operations are constant time so they are covered by the O(m)
term. Each Union operation has cost proportional to the length of the list whose head pointers get
updated. So, we need to find some way of analyzing the total cost of the Union operations.

Here is the key idea: we can pay for the union operation by charging O(1) to each element whose
head pointer is updated. So, all we need to do is sum up the costs charged to all the elements over
the entire course of the algorithm. Let’s do this by looking from the point of view of some lowly
element x. Over time, how many times does x get walked on and have its head pointer updated?
The answer is that its head pointer is updated at most log n times. The reason is that we only
update head pointers on the smaller of the two lists being joined, so every time x gets updated,
the size of the list it is in at least doubles, and this can happen at most log n times. So, we were
able to pay for unions by charging the elements whose head pointers are updated, and no element
gets charged more than O(log n) total, so the total cost for unions is O(n log n), or O(m + n log n)
for all the operations together.

Recall that this is already low-order compared to the O(m log m) sorting time for Kruskal’s algo-
rithm.

6.5 Data Structure 2 (tree-based)

Even though the running time of the list-based data structure was pretty fast, let’s think of ways
we could make it even faster. One idea is that instead of updating all the head pointers in list B
(or whichever was shorter) when we perform a Union, we could do this in a lazy way, just pointing
the head of B to the head of A and then waiting until we actually perform a find operation on
some item x before updating its pointer. This will decrease the cost of the Union operations but
will increase the cost of Find operations because we may have to take multiple hops. Notice that
by doing this we no longer need the downward pointers: what we have in general is a collection
of trees, with all links pointing up. Another idea is that rather than deciding which of the two
heads (or roots) should be the new one based on the size of their sets, perhaps there is some other
quantity that would give us better performance. In particular, it turns out we can do better by
setting the new root based on which tree has larger rank, which we will define in a minute.

We will prove that by implementing the two optimizations described above (lazy updates and union-
by-rank), the total cost is bounded above by O(m lg∗ n), where recall that lg∗ n is the number of
times you need to take log2 until you get down to 1. For instance,

lg∗(265536) = 1 + lg∗(65536) = 2 + lg∗(16) = 3 + lg∗(4) = 4 + lg∗(2) = 5.

So, basically, lg∗ n is never bigger than 5. Technically, the running time of this algorithm is even
better: O(mα(m,n)) where α is the inverse-Ackermann function which grows even more slowly
than lg∗. But the lg∗ n bound is hard enough to prove — let’s not go completely overboard!

We now describe the procedure more specifically. Each element (node) will have two fields: a parent

pointer that points to its parent in its tree (or itself if it is the root) and a rank, which is an integer
used to determine which node becomes the new root in a Union operation. The operations are as
follows.

6.5. DATA STRUCTURE 2 (TREE-BASED) 27

MakeSet(x): set x’s rank to 0 and its parent pointer to itself. This takes constant time.

Find(x): starting from x, follow the parent pointers until you reach the root, updating x and all
the nodes we pass over to point to the root. This is called path compression.

The running time for Find(x) is proportional to (original) distance of x to its root.

Union(x, y): Let Union(x, y) = Link(Find(x), Find(y)), where Link(root1,root2) behaves as fol-
lows. If the one of the roots has larger rank than the other, then that one becomes the new
root, and the other (smaller rank) root has its parent pointer updated to point to it. If the
two roots have equal rank, then one of them (arbitrarily) is picked to be the new root and its

rank is increased by 1. This procedure is called union by rank.

Properties of ranks: To help us understand this procedure, let’s first develop some properties
of ranks.

1. The rank of a node is the same as what the height of its subtree would be if we didn’t do
path compression. This is easy to see: if you take two trees of different heights and join them
by making the root of the shorter tree into a child of the root of the taller tree, the heights
do not change, but if the trees were the same height, then the final tree will have its height
increase by 1.

2. If x is not a root, then rank(x) is strictly less than the rank of x’s parent. We can see
this by induction: the Union operation maintains this property, and the Find operation only
increases the difference between the ranks of nodes and their parents.

3. The rank of a node x can only change if x is a root. Furthermore, once a node becomes a
non-root, it is never a root again. These are immediate from the algorithm.

4. There are at most n/2r nodes of rank ≥ r. The reason is that when a (root) node first reaches
rank r, its tree must have at least 2r nodes (this is easy to see by induction). Furthermore,
by property 2, all the nodes in its tree (except for itself) have rank < r, and their ranks are
never going to change by property 3. This means that (a) for each node x of rank ≥ r, we
can identify a set Sx of at least 2r − 1 nodes of smaller rank, and (b) for any two nodes x
and y of rank ≥ r, the sets Sx and Sy are disjoint. Since there are n nodes total, this implies
there can be at most n/2r nodes of rank ≥ r.

We’re now ready to prove the following theorem.

Theorem 6.2 The above tree-based algorithm has total running time O(m lg∗ n).

Proof: Let’s begin with the easy parts. First of all, the Union does two Find operations plus a
constant amount of extra work. So, we only need to worry about the time for the (at most 2m)
Find operations. Second, we can count the cost of a Find operation by charging $1 for each parent
pointer examined. So, when we do a Find(x), if x was a root then pay $1 (just a constant, so
that’s ok). If x was a child of a root we pay $2 (also just a constant, so that’s ok also). If x was
lower, then the very rough idea is that (except for the last $2) every dollar we spend is shrinking
the tree because of our path compression, so we’ll be able to amortize this cost somehow. For the
remaining part of the proof, we’re only going to worry about the steps taken in a Find(x) operation
up until we reach the child of the root, since the remainder is just constant time per operation.
We’ll analyze this using the ranks, and the properties we figured out above.

6.5. DATA STRUCTURE 2 (TREE-BASED) 28

Step 1: let’s imagine putting non-root nodes into buckets according to their rank. Bucket 0
contains all non-root nodes of rank 0, bucket 1 has all of rank 1, bucket 2 has ranks 2 through

22 − 1, bucket 3 has ranks 22 through 22
2

− 1, bucket 4 has ranks 22
2

through 22
2
2

− 1, etc. In
general, a bucket has ranks r through 2r − 1. In total, we have O(lg∗ n) buckets.

The point of this definition is that the number of nodes with rank in any given bucket is at most
n/(upper bound of bucket + 1), by property (4) of ranks above.

Step 2: When we walk up the tree in the Find(x) operation, we need to charge our steps to
something. Here’s the rule we will use: if the step we take moves us from a node u to a node v
such that v is in the same bucket as u, then we charge it to node u (the walk-ee). But if v is in a
higher bucket, we charge that step to x (the walk-er).

The easy part of this is the charge to x. We can move up in buckets at most O(lg∗ n) times, since
there are only O(lg∗ n) different buckets. So, the total cost charged to the walk-ers (adding up over
the m Find operations) is at most O(m lg∗ n).

The harder part is the charge to the walk-ee. The point here is that first of all, the node u charged
is not a root, so its rank is never going to change. Secondly, every time we charge this node u, the
rank of its new parent (after path compression) is at least 1 larger than the rank of its previous
parent by property 2. Now, it is true that increasing the rank of u’s parent could conceivably
happen log n times, which to us is a “big” number. But, once its parent’s rank becomes large
enough that it is in the next bucket, we never charge node u again as walk-ee. So, the bottom line
is that the maximum charge any node u gets is the range of his bucket.

To finish the proof, we just said that a bucket of upper bound B − 1 has at most n/B elements in
it, and its range is ≤ B. So, the total charge to all walk-ees in this bucket over the entire course
of the algorithm is at most (n/B)B = n. (Remember that the only elements being charged are
non-roots, so once they start getting charged, their rank is fixed so they can’t jump to some other
bucket and start getting charged there too.) This means the total charge of this kind summed over

all buckets is at most n times the number of buckets which is O(n lg∗ n). (Whew!)

Appendix B

Minimum Spanning Trees

A spanning tree of a graph is a tree that touches all the vertices (so, it only makes sense in
a connected graph). A minimum spanning tree (MST) is a spanning tree whose sum of edge
lengths is as short as possible (there may be more than one). We will sometimes call the sum of
edge lengths in a tree the size of the tree. For instance, imagine you are setting up a communication
network among a set of sites and you want to use the least amount of wire possible. Note: our
definition is only for undirected graphs.

What is the MST in the graph below?
5

2

1 1

4

8

6

D

A CB

FE

B.1 Prim’s algorithm

Prim’s algorithm is an MST algorithm that works much like Dijkstra’s algorithm does for shortest
path trees, if you are familiar with that. In fact, it’s even simpler (though the correctness proof is
a bit trickier).

Prim’s Algorithm:

1. Pick some arbitrary start node s. Initialize tree T = {s}.

2. Repeatedly add the shortest edge incident to T (the shortest edge having one vertex in
T and one vertex not in T) until the tree spans all the nodes.

For instance, what does Prim’s algorithm do on the above graph?

Before proving correctness for the algorithm, we first need a useful fact about spanning trees: if
you take any spanning tree and add a new edge to it, this creates a cycle. The reason is that there

206

B.2. KRUSKAL’S ALGORITHM 207

already was one path between the endpoints (since it’s a spanning tree), and now there are two. If
you then remove any edge in the cycle, you get back a spanning tree (removing one edge from a
cycle cannot disconnect a graph).

Theorem B.1 Prim’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We will prove correctness by induction. Let G be the given graph. Our inductive hypothesis
will be that the tree T constructed so far is consistent with (is a subtree of) some minimum spanning
tree M of G. This is certainly true at the start. Now, let e be the edge chosen by the algorithm.
We need to argue that the new tree, T ∪ {e} is also consistent with some minimum spanning tree
M ′ of G. If e ∈ M then we are done (M ′ = M). Else, we argue as follows.

Consider adding e to M . As noted above, this creates a cycle. Since e has one endpoint in T and
one outside T , if we trace around this cycle we must eventually get to an edge e′ that goes back in
to T . We know len(e′) ≥ len(e) by definition of the algorithm. So, if we add e to M and remove e′,
we get a new tree M ′ that is no larger than M was and contains T ∪{e}, maintaining our induction
and proving the theorem.

Running time: To implement this efficiently, we can store the neighbors of the current tree in a
priority-queue (pqueue), with priority-value equal to the length of the shortest edge between that
node and the current tree. We add a new node into the tree using a remove-min operation (taking
the node of smallest priority-value out of the pqueue); then, after adding this node, we examine
all outgoing edges and for each one that points to a node not in the tree we either (a) add it into
the pqueue if it is not there already, or (b) perform a “decrease-key” operation if it was in there
already but the new edge is shorter. This will give us O(m log n) running time if we implement
the pqueue using a standard heap, or O(m + n log n) running time if we use something called a
Fibonacci heap.

B.2 Kruskal’s algorithm

Here is another algorithm for finding minimum spanning trees called Kruskal’s algorithm. It is also
greedy but works in a different way.

Kruskal’s Algorithm:
Sort edges by length and examine them from shortest to longest. Put each edge into the
current forest (a forest is just a set of trees) if it doesn’t form a cycle with the edges chosen
so far.

E.g., let’s look at how it behaves in the graph below:

B.2. KRUSKAL’S ALGORITHM 208

5

2

1 1

4

8

6

D

A CB

FE

Kruskal’s algorithm sorts the edges and then puts them in one at a time so long as they don’t form
a cycle. So, first the AD and BE edges will be added, then the DE edge, and then the EF edge.
The AB edge will be skipped over because it forms a cycle, and finally the CF edge will be added
(at that point you can either notice that you have included n− 1 edges and therefore are done, or
else keep going, skipping over all the remaining edges one at a time).

Theorem B.2 Kruskal’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We can use a similar argument to the one we used for Prim’s algorithm. Let G be the
given graph, and let F be the forest we have constructed so far (initially, F consists of n trees of
1 node each, and at each step two trees get merged until finally F is just a single tree at the end).
Assume by induction that there exists an MST M of G that is consistent with F , i.e., all edges
in F are also in M ; this is clearly true at the start when F has no edges. Let e be the next edge
added by the algorithm. Our goal is to show that there exists an MST M ′ of G consistent with
F ∪ {e}.

If e ∈ M then we are done (M ′ = M). Else add e into M , creating a cycle. Since the two endpoints
of e were in different trees of F , if you follow around the cycle you must eventually traverse some
edge e′ 6= e whose endpoints are also in two different trees of F (because you eventually have to get
back to the node you started from). Now, both e and e′ were eligible to be added into F , which
by definition of our algorithm means that len(e) ≤ len(e′). So, adding e and removing e′ from M
creates a tree M ′ that is also a MST and contains F ∪ {e}, as desired.

Running time: The first step is sorting the edges by length which takes time O(m log m). Then,
for each edge we need to test if it connects two different components. This seems like it should be
a real pain: how can we tell if an edge has both endpoints in the same component? It turns out
there’s a nice data structure called the Union-Find’ data structure for doing this operation. It is
so efficient that it actually will be a low-order cost compared to the sorting step.

