
15-451/651: Design & Analysis of Algorithms October 31, 2013
Lecture #20 last changed: October 31, 2013

In the last lecture, we defined the class NP and the notion of NP-completeness, and proved
that the Circuit-SAT problem is NP-complete. In this lecture we continue our discussion of NP-
Completeness, showing the following results:

• CIRCUIT-SAT ≤p 3-SAT (proving 3-SAT is NP-complete)

• 3-SAT ≤p CLIQUE (proving CLIQUE is NP-complete)

• NP-completeness of Independent Set and Vertex Cover

1 Introduction

Let us begin with a quick recap of our discussion in the last lecture. First of all, to be clear in our
terminology, a problem means something like 3-coloring or network flow, and an instance means a
specific instance of that problem: the graph to color, or the network and distinguished nodes s and
t we want to find the flow between. A decision problem is just a problem where each instance is
either a YES-instance or a NO-instance, and the goal is to decide which type your given instance
is. E.g., for 3-coloring, G is a YES-instance if it has a 3-coloring and is a NO-instance if not. For
the Traveling Salesman Problem, an instance consists of a graph G together with an integer k, and
the pair (G, k) is a YES-instance iff G has a TSP tour of total length at most k.

We now define our key problem classes of interest.

P: The class of decision problems Q that have polynomial-time algorithms. Q ∈ P if there exists
a polynomial-time algorithm A such that A(I) = YES iff I is a YES-instance of Q.

NP: The class of decision problems where at least the YES-instances have short proofs (that can
be checked in polynomial-time). Q ∈ NP if there exists a verifier V (I,X) such that:

• If I is a YES-instance, then there exists X such that V (I,X) = YES,

• If I is a NO-instance, then for all X, V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

co-NP: vice-versa — there are short proofs for NO-instances. Specifically, Q ∈ co-NP if there
exists a verifier V (I,X) such that:

• If I is a YES-instance, for all X, V (I,X) = YES,

• If I is a NO-instance, then there exists X such that V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.
For example, the problem Circuit-Equivalence: “Given two circuits C1, C2, do they com-
pute the same function?” is in co-NP, because if the answer is NO, then there is a short,
easily verified proof (an input x such that C1(x) 6= C2(x)).

1

Aside: we could define the search-version of a problem in NP as: “...and furthermore, if I is a YES-
instance, then produce X such that V (I,X) = YES.” If we can solve any NP-complete decision
problem in polynomial time then we can actually solve search-version of any problem in NP in
polynomial-time too. The reason is that if we can solve an NP-complete problem in polynomial
time, then we can solve the ESP in polynomial time, and we already saw how that allows us to
produce the X for any given verifier V .

2 Circuit-SAT and 3-SAT

A problem Q is NP-complete if:

1. Q ∈ NP, and

2. Any other Q′ in NP is polynomial-time reducible to Q; that is, Q′ ≤p Q.

If Q just satisfies (2) then it’s called NP-hard. Last time we showed that the following problem is
NP-complete:

Circuit-SAT: Given a circuit of NAND gates with a single output and no loops (some
of the inputs may be hardwired). Question: is there a setting of the inputs that causes
the circuit to output 1?

Unfortunately, Circuit-SAT is a little unweildy. What’s especially interesting about NP-completeness
is not just that such problems exist, but that a lot of very innocuous-looking problems are NP-
complete. To show results of this form, we will first reduce Circuit-SAT to the much simpler-looking
3-SAT problem (i.e., show Circuit-SAT ≤p 3-SAT). Recall the definition of 3-SAT from last time:

Definition 1 3-SAT: Given: a CNF formula (AND of ORs) over n variables x1, . . . , xn, where
each clause has at most 3 variables in it. Goal: find an assignment to the variables that satisfies
the formula if one exists.

Theorem 2 CIRCUIT-SAT ≤p 3-SAT. I.e., if we can solve 3-SAT in polynomial time, then we
can solve CIRCUIT-SAT in polynomial time (and thus all of NP).

Proof: We need to define a function f that converts instances C of Circuit-SAT to instances of
3-SAT such that the formula f(C) produced is satisfiable iff the circuit C had an input x such that
C(x) = 1. Moreover, f(C) should be computable in polynomial time, which among other things
means we cannot blow up the size of C by more than a polynomial factor.1

First of all, let’s assume our input is given as a list of gates, where for each gate gi we are told
what its inputs are connected to. For example, such a list might look like: g1 = NAND(x1, x3);
g2 = NAND(g1, x4); g3 = NAND(x1, 1); g4 = NAND(g1, g2); In addition we are told which gate
gm is the output of the circuit.

We will now compile this into an instance of 3-SAT as follows. We will make one variable for each
input xi of the circuit, and one for every gate gi. We now write each NAND as a conjunction of 4
clauses. In particular, we just replace each statement of the form “y3 = NAND(y1, y2)” with:

1Using the terminology of the previous lecture, this is a Karp reduction (or many-one reduction) from Circuit-SAT
to 3-SAT. In other words, an instance C of Circuit-SAT is being mapped to a single instance f(C) of 3-SAT so that
C is a YES-instance if and only if f(C) is a YES-instance. You should use Karp reductions for all problems whenever
possible.

2

(y1 OR y2 OR y3) ← if y1 = 0 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 0 and y2 = 1 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 1 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3). ← if y1 = 1 and y2 = 1 we must have y3 = 0

Finally, we add the clause (gm), requiring the circuit to output 1. In other words, we are asking:
is there an input to the circuit and a setting of all the gates such that the output of the circuit
is equal to 1, and each gate is doing what it’s supposed to? So, the 3-CNF formula produced is
satisfiable if and only if the circuit has a setting of inputs that causes it to output 1. The size of the
formula is linear in the size of the circuit. Moreover, the construction can be done in polynomial
(actually, linear) time. So, if we had a polynomial-time algorithm to solve 3-SAT, then we could
solve circuit-SAT in polynomial time too.

Important note: Now that we know 3-SAT is NP-complete, in order to prove some other NP
problem Q is NP-complete, we just need to reduce 3-SAT to Q; i.e., to show that 3-SAT ≤p Q. In
particular, we want to construct a (polynomial-time computable) function f that converts instances
of 3-SAT to instances of Q that preserves the YES/NO answer. This means that if we could solve
Q efficiently then we could solve 3-SAT efficiently.

Make sure you understand this reasoning — a lot of people make the mistake of doing the reduction
the other way around. Doing the reduction the wrong way is just as much work but does not prove
the result you want to prove!

3 CLIQUE

We will now use the fact that 3-SAT is NP-complete to prove that a natural graph problem called
the Clique problem is NP-complete.

Definition 3 Clique: Given a graph G, find the largest clique (set of nodes such that all pairs in
the set are neighbors). Decision problem: “Given G and integer k, does G contain a clique of size
≥ k?”

Note that Clique is clearly in NP.

Theorem 4 Clique is NP-Complete.

Proof: We will reduce 3-SAT to Clique. Specifically, given a 3-CNF formula F of m clauses over
n variables, we construct a graph as follows. First, for each clause c of F we create one node for
every assignment to variables in c that satisfies c. E.g., say we have:

F = (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3) ∧ . . .

Then in this case we would create nodes like this:

(x1 = 0, x2 = 0, x4 = 0) (x3 = 0, x4 = 0) (x2 = 0, x3 = 0) . . .
(x1 = 0, x2 = 1, x4 = 0) (x3 = 0, x4 = 1) (x2 = 0, x3 = 1)
(x1 = 0, x2 = 1, x4 = 1) (x3 = 1, x4 = 1) (x2 = 1, x3 = 0)
(x1 = 1, x2 = 0, x4 = 0)
(x1 = 1, x2 = 0, x4 = 1)
(x1 = 1, x2 = 1, x4 = 0)
(x1 = 1, x2 = 1, x4 = 1)

3

We then put an edge between two nodes if the partial assignments are consistent. Notice that
the maximum possible clique size is m because there are no edges between any two nodes that
correspond to the same clause c. We claim that the maximum size is m if and only if the original
formula has a satisfying assignment.

Suppose the 3-SAT problem does have a satisfying assignment, then in fact there is an m-clique
(just pick some satisfying assignment and take the m nodes consistent with that assignment).

For the other direction, we can either show that if there isn’t a satisfying assignment to F then the
maximum clique in the graph has size < m, or argue the contrapositive and show that if there is
a m-clique in the graph, then there is a satisfying assignment for the formula. Specifically, if the
graph has an m-clique, then this clique must contain one node per clause c. So, just read off the
assignment given in the nodes of the clique: this by construction will satisfy all the clauses. So, we
have shown this graph has a clique of size m iff F was satisfiable.

Finally, to complete the proof, we note that our reduction is polynomial time since the graph
produced has total size at most quadratic in the size of the formula F (O(m) nodes, O(m2) edges).
Therefore Clique is NP-complete.

3.1 Proving NP-completeness in 2 Easy Steps

If you want to prove that problem Q is NP-complete, you need to do two things:

1. Show that Q is in NP.

2. Choose some NP-hard problem P to reduce from. This problem could be 3-SAT or Clique
or Independent Set or Vertex Cover or any of the zillions of NP-hard problems known.
Most of the time in this course we will suggest a problem to reduce from (but you can choose
another one if you like). In the real world you will have to figure out this problem P yourself.

Now you want to reduce from P to Q. In other words, given any instance I of P , show how
to transform it into an instance f(I) of Q, such that

I is a YES-instance of P ⇐⇒ f(I) is a YES-instance of Q.

Note the “ ⇐⇒ ” in the middle—you need to show both directions. You also need to show
that the mapping f(·) can be done in polynomial time (and hence f(I) has size polynomial
in the size of the original instance I).

A common mistake is reducing from the problem Q to the hard problem P . Think about what
this means. It means you can model your problem as a hard problem. Just because you can model
addition as a linear program or as 3-SAT does not make addition complicated. You want to model
the hard problem P as your problem Q.

4 Independent Set and Vertex Cover

An Independent Set in a graph is a set of nodes no two of which have an edge. E.g., in a 7-cycle,
the largest independent set has size 3, and in the graph coloring problem, the set of nodes colored
red is an independent set. The Independent Set problem is: given a graph G and an integer k,
does G have an independent set of size ≥ k?

Theorem 5 Independent Set is NP-complete.

4

Proof: We reduce from Clique. Given an instance (G, k) of the Clique problem, we output the
instance (H, k) of the Independent Set problem where H is the complement of G. That is, H
has edge (u, v) iff G does not have edge (u, v). Then H has an independent set of size k iff G has
a k-clique.

A vertex cover in a graph is a set of nodes such that every edge is incident to at least one of them.
For instance, if the graph represents rooms and corridors in a museum, then a vertex cover is a set
of rooms we can put security guards in such that every corridor is observed by at least one guard.
In this case we want the smallest cover possible. The Vertex Cover problem is: given a graph
G and an integer k, does G have a vertex cover of size ≤ k?

Theorem 6 Vertex Cover is NP-complete.

Proof: If C is a vertex cover in a graph G with vertex set V , then V − C is an independent set.
Also if S is an independent set, then V −S is a vertex cover. So, the reduction from Independent
Set to Vertex Cover is very simple: given an instance (G, k) for Independent Set, produce
the instance (G,n− k) for Vertex Cover, where n = |V |. In other words, to solve the question
“is there an independent set of size at least k” just solve the question “is there a vertex cover of
size ≤ n− k?” So, Vertex Cover is NP-Complete too.

5 NP-Completeness summary

NP-complete problems have the dual property that they belong to NP and they capture the
essence of the entire class in that a polynomial-time algorithm to solve one of them would let you
solve anything in NP.

We proved that 3-SAT is NP-complete by reduction from Circuit-SAT. Given a circuit C, we
showed how to compile it into a 3-CNF formula by using extra variables for each gate, such that
the formula produced is satisfiable if and only if there exists x such that C(x) = 1. This means
that a polynomial-time algorithm for 3-SAT could solve any problem in NP in polynomial-time,
even factoring. Moreover, 3-SAT is a simple-looking enough problem that we can use it to show
that many other problems are NP-complete as well, including Clique, Independent Set, and
Vertex Cover.

6 Bonus: A Non-Trivial Proof of Membership in NP

Most of the time the proofs of a problem belonging to NP are trivial: you can use the solution as
the witness X. Here’s a non-trivial example that we alluded to in lecture, a proof that Primes is
in NP. Recall that Primes is the decision problem: given a number N , is it prime? To show this
is in NP, we need to show a poly-time verifier algorithm V (N,X) that N is a prime if and only if
there exists a short witness X which will make the verifier say YES.

Today we know that Primes is in P, so we could just use that algorithm as a verifier. In fact
we could use the fact that testing Primality has a randomized algorithm with one-sided error to
also show that Primes is in NP. But those result are somewhat advanced, can we use something
simpler?

Here is a proof due to Vaughan Pratt2 from 1975 that uses basic number theory. He uses the

2Computer Science Professor at Stanford. He was one of the inventors of the deterministic linear-time median-
finding algorithm, and also the Knuth-Morris-Pratt string matching algorithm. Also designed the logo for Sun

5

following theorem of Édouard Lucas3:

Theorem 7 A number p is a prime if and only if there exists some g ∈ {0, 1, . . . , p− 1} such that

gp−1 ≡ 1 mod p and g(p−1)/q 6≡ 1 mod p for all primes q|(p− 1).

Great. So if N was indeed a prime, the witness could be this number g corresponding to N that
Lucas promises. We could check for that g to the appropriate powers was either equivalent to 1 or
not. (By repeating squaring we can compute those powers in time O(logN).)

Hmm, we need to check the condition for all primes q that divide N −1. No problem: we can write
down the prime factorization of N − 1 as part of the witness. It can say: N − 1 = q1 · q2 · . . . · qk.
Note that there are at most log2(N − 1) many distinct primes in this list (since each of them is
at least 2), and each of them takes O(logN) bits to write down. And what about their primality?
This is the clever part: we recursively write down witnesses for their primality. (The base case is
3 or smaller, then we stop.)

How long is this witness? Let’s just look at the number of numbers we write down, each number
will be O(logN) bits.

Note we wrote down g, and then k numbers qi. That’s a total of k + 1 numbers. And then we
recurse. Say each qi required c(log2 qi)− 2 numbers to write down a witness of primality. Then we
need to ensure that

(k + 1) +
k∑

i=1

(c log2 qi − 3) ≤ c log2N − 3

But
∑k

i log2 qi = log2(N − 1). So we get that the LHS is (k + 1) + c log2(N − 1)− 3k = c log2(N −
1)− 2k + 1. And finally, we use the fact that N − 1 cannot be prime if N is (except for N = 3), so
k ≥ 2 and thus c log2(N − 1)− 2k + 1 ≤ c log2N − 3. Finally, looking at the base case shows that
c ≥ 4 suffices.

To summarize, the witness used at most O(logN) numbers, each of O(logN) bits. This completes
the proof that Primes is in NP.

Microsystems.
3French mathematician (1842-1891), worked on number theory, and on Fibonacci numbers and the Lucas numbers

named after him. Apparently invented the Tower of Hanoi puzzle (or at least popularized it). Died when cut by a
piece of glass from a broken plate at a banquet.

6

