
On-Line Algorithms in Machine LearningAvrim BlumCarnegie Mellon University, Pittsburgh PA 15213. Email: avrim@cs.cmu.eduAbstract. The areas of On-Line Algorithms and Machine Learning areboth concerned with problems of making decisions about the presentbased only on knowledge of the past. Although these areas di�er in termsof their emphasis and the problems typically studied, there are a collec-tion of results in Computational Learning Theory that �t nicely into the\on-line algorithms" framework. This survey article discusses some of theresults, models, and open problems from Computational Learning The-ory that seem particularly interesting from the point of view of on-linealgorithms.The emphasis in this article is on describing some of the simpler, more in-tuitive results, whose proofs can be given in their entirity. Pointers to theliterature are given for more sophisticated versions of these algorithms.1 IntroductionThe areas of On-Line Algorithms and Machine Learning are both concerned withproblems of making decisions from limited information. Although they di�er interms of their emphasis and the problems typically studied, there are a collectionof results in Computational Learning Theory that �t nicely into the \on-line al-gorithms" framework. This survey article discusses some of the results, models,and open problems from Computational Learning Theory that seem particularlyinteresting from the point of view of on-line algorithms. This article is not meantto be comprehensive. Its goal is to give the reader a sense of some of the inter-esting ideas and problems in this area that have an \on-line algorithms" feel tothem.We begin by describing the problem of \predicting from expert advice," whichhas been studied extensively in the theoretical machine learning literature. Wepresent some of the algorithms that have been developed and that achieve quitetight bounds in terms of a competitive ratio type of measure. Next we broadenour discussion to consider several standard models of on-line learning from exam-ples, and examine some of the key issues involved.We describe several interestingalgorithms for on-line learning, including the Winnow algorithm and an algo-rithm for learning decision lists, and discuss issues such as attribute-e�cientlearning and the in�nite attribute model, and learning target functions thatchange over time. Finally, we end with a list of important open problems in thearea and a discussion of how ideas from Computational Learning Theory andOn-Line Algorithms might be fruitfully combined.To aid in the
ow of the text, most of the references and discussions of historyare placed in special \history" subsections within the article.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

2 Predicting from Expert AdviceWe begin with a simple, intuitive problem. A learning algorithm is given thetask each day of predicting whether or not it will rain that day. In order tomake this prediction, the algorithm is given as input the advice of n \experts".Each day, each expert predicts yes or no, and then the learning algorithm mustuse this information in order to make its own prediction (the algorithm is givenno other input besides the yes/no bits produced by the experts). After makingits prediction, the algorithm is then told whether or not, in fact, it rained thatday. Suppose we make no assumptions about the quality or independence ofthe experts, so we cannot hope to achieve any absolute level of quality in ourpredictions. In that case, a natural goal instead is to perform nearly as well as thebest expert so far: that is, to guarantee that at any time, our algorithm has notperformed much worse than whichever expert has made the fewest mistakes todate. In the language of competitive analysis, this is the goal of being competitivewith respect to the best single expert.We will call the sequence of events in which the algorithm (1) receives thepredictions of the experts, (2) makes its own prediction, and then (3) is toldthe correct answer, a trial. For most of this discussion we will assume thatpredictions belong to the set f0; 1g, though we will later consider more generalsorts of predictions (e.g., many-valued and real-valued).2.1 A Simple AlgorithmThe problem described above is a basic version of the problem of \predicting fromexpert advice" (extensions, such as when predictions are probabilities, or whenthey are more general sorts of suggestions, are described in Section 2.3 below).We now describe a simple algorithm called the Weighted Majority algorithm.This algorithm maintains a list of weights w1; : : :wn, one for each expert, andpredicts based on a weighted majority vote of the expert opinions.The Weighted Majority Algorithm (simple version)1. Initialize the weights w1; : : : ; wn of all the experts to 1.2. Given a set of predictions fx1; : : : ; xng by the experts, output the pre-diction with the highest total weight. That is, output 1 ifXi:xi=1wi � Xi:xi=0wiand output 0 otherwise.3. When the correct answer ` is received, penalize each mistaken expertby multiplying its weight by 1=2. That is, if xi 6= `, then wi wi=2; ifxi = ` then wi is not modi�ed.Goto 2.Theorem1. The number of mistakes M made by the Weighted Majority algo-rithm described above is never more than 2:41(m+ lgn), where m is the numberof mistakes made by the best expert so far.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Proof. Let W denote the total weight of all the experts, so initiallyW = n. Ifthe algorithmmakes a mistake, this means that at least half of the total weight ofexperts predicted incorrectly, and therefore in Step 3, the total weight is reducedby at least a factor of 1=4. Thus, if the algorithm makes M mistakes, we have:W � n(3=4)M : (1)On the other hand, if the best expert has made m mistakes, then its weight is1=2m and so clearly: W � 1=2m: (2)Combining (1) and (2) yields 1=2m � n(3=4)M and therefore:M � 1lg(4=3)(m + lgn)� 2:41(m+ lgn)ut2.2 A Better AlgorithmWe can achieve a better bound than that described above by modifying thealgorithm in two ways. The �rst is by randomizing. Instead of predicting theoutcome with the highest total weight, we instead view the weights as probabil-ities, and predict each outcome with probability proportional to its weight. Thesecond change is to replace \multiply by 1=2" with \multiply by �" for a value� to be determined later.Intuitively, the advantage of the randomized approach is that it dilutes theworst case. Previously, the worst case was that slightly more than half of thetotal weight predicted incorrectly, causing the algorithm to make a mistake andyet only reduce the total weight by 1=4. Now, there is roughly a 50=50 chancethat the algorithm will predict correctly in this case, and more generally, theprobability that the algorithm makes a mistake is tied to the amount that theweight is reduced.A second advantage of the randomized approach is that it can be viewed asselecting an expert with probability proportional to its weight. Therefore, thealgorithm can be naturally applied when predictions are \strategies" or othersorts of things that cannot easily be combined together. Moreover, if the \ex-perts" are programs to be run or functions to be evaluated, then this view speedsup prediction since only one expert needs to be examined in order to producethe algorithm's prediction (although all experts must be examined in order tomake an update of the weights). We now formally describe the algorithm andits analysis.The Weighted Majority Algorithm (randomized version)1. Initialize the weights w1; : : : ; wn of all the experts to 1.2. Given a set of predictions fx1; : : : ; xng by the experts, output xi withprobability wi=W , where W =Pi wi.

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

3. When the correct answer ` is received, penalize each mistaken expert bymultiplying its weight by �.Goto 2.Theorem2. On any sequence of trials, the expected number of mistakes Mmade by the Randomized Weighted Majority algorithm described above satis�es:M � m ln(1=�) + lnn1� �where m is the number of mistakes made by the best expert so far.For instance, for � = 1=2, we get an expected number of mistakes less than1:39m+2 lnn, and for � = 3=4 we get an expected number of mistakes less than1:15m + 4 lnn. That is, by adjusting �, we can make the \competitive ratio"of the algorithm as close to 1 as desired, at the expense of an increase in theadditive constant. In fact, by adjusting � dynamically using a typical \guess anddouble" approach, one can achieve the following:Corollary 3. On any sequence of trials, the expected number of mistakes Mmade by a modi�ed version of the Randomized Weighted Majority algorithmdescribed above satis�es: M � m + lnn+O(pm lnn)where m is the number of mistakes made by the best expert so far.Proof of Theorem 2. De�ne Fi to be the fraction of the total weight on the wronganswers at the ith trial. Say we have seen t examples. Let M be our expectednumber of mistakes so far, so M =Pti=1Fi.On the ith example, the total weight changes according to:W W (1� (1� �)Fi)since we multiply the weights of experts that made a mistake by � and there isan Fi fraction of the weight on these experts. Hence the �nal weight is:W = n tYi=1(1� (1� �)Fi)Let m be the number of mistakes of the best expert so far. Again, using thefact that the total weight must be at least as large as the weight on the bestexpert, we have: n tYi=1(1� (1� �)Fi) � �m (3)

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

Taking the natural log of both sides we get:lnn+ tXi=1 ln(1� (1� �)Fi) � m ln �� lnn� tXi=1 ln(1� (1� �)Fi) � m ln(1=�)� lnn + (1� �) tXi=1 Fi � m ln(1=�)M � m ln(1=�) + lnn1� �Where we get the third line by noting that � ln(1 � x) > x, and the fourth byusing M =Pti=1 Fi. ut2.3 History and ExtensionsWithin the Computational Learning Theory community, the problem of pre-dicting from expert advice was �rst studied by Littlestone and Warmuth [28],DeSantis, Markowsky and Wegman [15], and Vovk [35]. The algorithms describedabove as well as Theorems 1 and 2 are from Littlestone and Warmuth [28], andCorollary 3, as well as a number of re�nements, are from Cesa-Bianchi et al.[12]. Perhaps one of the key lessons of this work in comparison to work of amore statistical nature is that one can remove all statistical assumptions aboutthe data and still achieve extremely tight bounds (see Freund [18]). This prob-lem and many variations and extensions have been addressed in a number ofdi�erent communities, under names such as the \sequential compound decisionproblem" [32] [4], \universal prediction" [16], \universal coding" [33], \univer-sal portfolios" [13], and \prediction of individual sequences"; the notion of thecompetitiveness is also called the \min-max regret" of an algorithm. A web pageuniting some of these communities and with a discussion of this general problemnow exists at http://www-stat.wharton.upenn.edu/Seq96.A large variety of extensions to the problem described above have been stud-ied. For example, suppose that each expert provides a real number between 0and 1 as its prediction (e.g., interpret a real number p as the expert's beliefin the probability of rain) and suppose that the algorithm also may produce areal number between 0 and 1. In this case, one must also specify a loss function| what is the penalty for predicting p when the outcome is x? Some commonloss functions appropriate to di�erent settings are the absolute loss: jp� xj, thesquare loss: (p�x)2, and the log loss: �x ln p� (1�x) ln(1� p). Papers of Vovk[35, 36], Cesa-Bianchi et al. [12, 11], and Foster and Vohra [17] describe optimalalgorithms both for these speci�c loss functions and for a wide variety of generalloss functions.A second extension of this framework is to broaden the class of algorithmsagainst which the algorithm is competitive. For instance, Littlestone, Long, and

Chapter 14 in "Online Algorithms: the state of the art", Fiat and Woeginger eds., LNCS #1442, 1998.

