15-451/651: Design & Analysis of Algorithms
Some more notes on Splay Trees

Here’s a more verbose statement of the Access Lemma, and its use to prove the Balance Theorem.
1 Access Lemma
Take any tree T (it does not have to arise in the splaying algorithm, and may be created any which
way), and any weights w(-) on the nodes of T'. Let T'(z) be the subtree rooted at .
For a node = € T, define
S(x) = ZyGT(:):) w(y)
r(x) := [logy s(z)]
O(T) = per ()
Lemma 1 (Access Lemma) Take any tree T with root t, and any weights w(-) on the nodes.
Suppose you splay node x; let T' be the new tree. Then
amortized number of splaying steps = actual number of splaying steps + (®(T") — ®(T))
<3(r(t) —r(z)) + 1.
To get a sense for the Access Lemma, let us use it to prove the Balance Theorem.
2 Balance Theorem
Suppose all the weights equal 1. Then the access lemma says that if we splay node « in tree T' to
get the new tree T”
actual number of splaying steps + (®(1") — ®(T')) < 3(logyn — log, |T'(z)]) + 1
<3logyn + 1.

Hence, if we start off with a tree T of size at most n and perform any sequence of m splays to it

splay splay splay splay
To Ty 15 e T,

repeatedly using this inequality m times shows:
actual total number of splaying steps + (®(1,,) — ®(7p)) < m(3logyn + 1).
In any tree T" with unit weights, each s(z) < n so each r(z) < logyn so ®(7") < nlogyn; also
®(T) > 0. Rearranging, we get
actual total number of splaying steps < m(3logyn + 1) + (®(Tp) — ©(T1))
< O(mlogn) + O(nlogn).

This proves the Balance Theorem.
3 What next?

Suppose you have some way of inserting a node into a tree. Now if you start off with a tree Ty of
size ng and perform any sequence of m splays and inserts to it

splay spla insert spla insert
Ty T 5Ty Ty =5 Ty 255 T,

you now know how the potential changes during the splay moves. How does it change for the insert
moves? You'll solve this in HW#4. (What if you had deletes? Think about it if you're interested.)

1



	Access Lemma
	Balance Theorem
	What next?

