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Lecture #14: Linear Programming I last changed: October 14, 2014

In this lecture we describe a very general problem called linear programming that can be used to
express a wide variety of different kinds of problems. We can use algorithms for linear program-
ming to solve the max-flow problem, solve the min-cost max-flow problem, find minimax-optimal
strategies in games, and many other things. We will primarily discuss the setting and how to code
up various problems as linear programs (LPs). At the end, we will briefly describe some of the
algorithms for solving LPs. Specific topics include:

• The definition of linear programming and simple examples.
• Using linear programming to solve max flow and min-cost max flow.
• Using linear programming to solve for minimax-optimal strategies in games.
• Algorithms for linear programming.

1 Introduction

In recent lectures we have looked at the following problems:

— Bipartite maximum matching: given a bipartite graph, find the largest set of edges with no
endpoints in common.

— Network flow (more general than bipartite matching).

— Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. (Except we won’t necessarily be able to get integer solutions, even when the specifi-
cation of the problem is integral).

Linear Programming is important because it is so expressive: many, many problems can be coded
up as linear programs (LPs). This especially includes problems of allocating resources and business
supply-chain applications. In business schools and Operations Research departments there are
entire courses devoted to linear programming. Today we will mostly say what they are and give
examples of encoding problems as LPs. We will only say a tiny bit about algorithms for solving
them.

Before defining the problem, let’s motivate it with an example:

Example: There are 168 hours in a week. Say we want to allocate our time between classes and
studying (S), fun activities and going to parties (P ), and everything else (E) (eating, sleeping,
taking showers, etc). Suppose that to survive we need to spend at least 56 hours on E (8
hours/day). To maintain sanity we need P + E ≥ 70. To pass our courses, we need S ≥ 60,
but more if don’t sleep enough or spend too much time partying: 2S + E − 3P ≥ 150. (E.g.,
if don’t go to parties at all then this isn’t a problem, but if we spend more time on P then
need to sleep more or study more).

Q1: Can we do this? Formally, is there a feasible solution?

A: Yes. For instance, one feasible solution is: S = 80, P = 20, E = 68.
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Q2: Suppose our notion of happiness is expressed by 2P +E. What is a feasible solution such that
this is maximized? The formula “2P + E” is called an objective function.

The above is an example of a linear program. What makes it linear is that all our constraints are
linear inequalities in our variables. E.g., 2S + E − 3P ≥ 150. In addition, our objective function
is also linear. We’re not allowed things like requiring SE ≥ 100, since this wouldn’t be a linear
inequality.

2 Definition of Linear Programming

More formally, a linear programming problem is specified as follows.

Given:

• n variables x1, . . . , xn.

• m linear inequalities in these variables (equalities OK too).

E.g., 3x1 + 4x2 ≤ 6, 0 ≤ x1 ≤ 3, etc.

• We may also have a linear objective function. E.g., 2x1 + 3x2 + x3.

Goal:

• Find values for the xi’s that satisfy the constraints and maximize the objective. (In the
“feasibility problem” there is no objective function: we just want to satisfy the constraints.)

For instance, let’s write out our time allocation problem this way.

Variables: S, P , E.

Objective: maximize 2P + E, subject to

Constraints: S + P + E = 168

E ≥ 56

S ≥ 60

2S + E − 3P ≥ 150

P + E ≥ 70

P ≥ 0 (can’t spend negative time partying)

3 Modeling problems as Linear Programs

Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms of
labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

2



Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We have
3300 hours of labor and 4000 units of material available. We are allowed to produce 12000 units of
pollution, and we want to maximize the number of cars produced. How can we model this?

To model a problem like this, it helps to ask the following three questions in order: (1) what are
the variables, (2) what is our objective in terms of these variables, and (3) what are the constaints.
Let’s go through these questions for this problem.

1. What are the variables? x1, x2, x3, x4, where xi denotes the number of cars at plant i.

2. What is our objective? maximize x1 + x2 + x3 + x4.

3. What are the constraints?

xi ≥ 0 (for all i)

x3 ≥ 400

2x1 + 3x2 + 4x3 + 5x4 ≤ 3300

3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

Note that we are not guaranteed the solution produced by linear programming will be integral. For
problems where the numbers we are solving for are large (like here), it is usually not a very big
deal because you can just round them down to get an almost-optimal solution. However, we will
see problems later where it is a very big deal.

4 Modeling Network Flow

We can model the max flow problem as a linear program too.

Variables: Set up one variable fuv for each edge (u, v). Let’s just represent the positive flow since
it will be a little easier with fewer constraints.

Objective: Maximize
∑

u fut −
∑

u ftu. (maximize the flow into t minus any flow out of t)

Constraints:

– For all edges (u, v), 0 ≤ fuv ≤ c(u, v). (capacity constraints)

– For all v 6∈ {s, t},
∑

u fuv =
∑

u fvu. (flow conservation)

For instance, consider the example from the network-flow lecture:
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In this case, our LP is: maximize fct + fdt subject to the constraints:

0 ≤ fsa ≤ 4, 0 ≤ fac ≤ 3, etc.

fsa = fac, fsb + fcb = fbc + fbd, fac + fbc = fcb + fct, fbd = fdt.

How about min cost max flow? In min-cost max flow, each edge (u, v) has both a capacity
c(u, v) and a cost w(u, v). The goal is to find out of all possible maximum s-t flows the one of least
total cost, where the cost of a flow f is defined as∑

(u,v)∈E

w(u, v)fuv.

We can do this in two different ways. One way is to first solve for the maximum flow f , ig-
noring costs. Then, add a constraint that flow must equal f , and subject to that constraint
(plus the original capacity and flow conservation constraints), minimize the linear cost function∑

(u,v)∈E w(u, v)fuv. Alternatively, you can solve this all in one step by adding an edge of infinite
capacity and very negative cost from t to s, and then just minimizing cost (which will automatically
maximize flow).

5 2-Player Zero-Sum Games

Suppose we are given a 2-player zero-sum game with n rows and n columns, and we want to compute
a minimax optimal strategy. For instance, perhaps a game like this (say payoffs are for the row
player):

20 −10 5
5 10 −10
−5 0 10

Let’s see how we can use linear programming to solve this game. Informally, we want the variables
to be the things we want to figure out, which in this case are the probabilities to put on our different
choices p1, . . . , pn. These have to form a legal probability distribution, and we can describe this
using linear inequalities: namely, p1 + . . . + pn = 1 and pi ≥ 0 for all i.

Our goal is to maximize the worst case (minimum), over all columns our opponent can play, of our
expected gain. This is a little confusing because we are maximizing a minimum. However, we can
use a trick: we will add one new variable v (representing the minimum), put in constraints that
our expected gain has to be at least v for every column, and then define our objective to be to
maximize v. Putting this all together we have (assume our input is given as an array m where mij

represents the payoff to the row player when the row player plays i and the column player plays j):

Variables: p1, . . . , pn and v.

Objective: Maximize v.

Constraints:

• pi ≥ 0 for all i, and
∑

i pi = 1. (the pi form a probability distribution)

• for all columns j, we have
∑

i pimij ≥ v.
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6 Algorithms for Linear Programming

How can we solve linear programs? The standard algorithm for solving LPs is the Simplex Algo-
rithm, developed in the 1940s. It’s not guaranteed to run in polynomial time, and you can come up
with bad examples for it, but in general the algorithm runs pretty fast. Only much later in 1980
was it shown that linear programming could be done in polynomial time by something called the
Ellipsoid Algorithm (but it tends to be fairly slow in practice). Later on, a faster polynomial-time
algorithm called Karmarkar’s Algorithm was developed, which is competitive with Simplex. There
are many commercial LP packages, for instance LINDO, CPLEX, Solver (in Excel) and others.

We won’t have time to describe any of these algorithms in detail. Instead, we will just give some
intuition and the high-level idea of how they work by viewing linear programming as a geometrical
problem.

Think of an n-dimensional space with one coordinate per variable. A solution is a point in this
space. An inequality, like x1 +x2 ≤ 6 is saying that we need the solution to be on a specified side of
a certain hyperplane. The feasible region is the convex region in space defined by these constraints.
Then we want to find the feasible point that is farthest in the “objective” direction.

Let’s go back to our first example with S, P , and E. To make this easier to draw, we can use our
first constraint that S +P +E = 168 to replace S with 168−P −E. This means we can just draw
in 2 dimensions, P and E. See Figure 1.

Figure 1: Feasible region for our time-planning problem. The constraints are: E ≥ 56; P + E ≥ 70;
P ≥ 0; S ≥ 60 which means 168−P −E ≥ 60 or P +E ≤ 108; and finally 2S− 3P +E ≥ 150 which
means 2(168− P − E)− 3P + E ≥ 150 or 5P + E ≤ 186.

We can see from the figure that for the objective of maximizing P , the optimum happens at E =
56, P = 26. For the objective of maximizing 2P + E, the optimum happens at E = 88.5, P = 19.5,
as drawing the contours indicates (see Figure 2).

We can use this geometric view to motivate the algorithms.

The Simplex Algorithm: The earliest and most common algorithm in use is called the Simplex
method. The idea is to start at some “corner” of the feasible region (to make this easier, we can add
in so-called “slack variables” that will drop out when we do our optimization). Then we repeatedly
do the following step: look at all neighboring corners of our current position and go to the best one
(the one for which the objective function is greatest) if it is better than our current position. Stop
when we get to a corner where no neighbor has a higher objective value than we currently have.
The key fact here is that (a) since the objective is linear, the optimal solution will be at a corner (or
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Figure 2: Contours for 2P + E.

maybe multiple corners). Furthermore, (b) there are no local maxima: if you’re not optimal, then
some neighbor of you must have a strictly larger objective value than you have. That’s because the
feasible region is convex. So, the Simplex method is guaranteed to halt at the best solution. The
problem is that it is possible for there to be an exponential number of corners and it is possible for
Simplex to take an exponential number of steps to converge. But, in practice this usually works
well.

The Ellipsoid Algorithm: The Ellipsoid Algorithm was invented by Khachiyan in 1980 in
Russia.

This algorithms solves just the “feasibility problem,” but you can then do binary search with the
objective function to solve the optimization problem. The idea is to start with a big ellipse (called
an ellipsoid in higher dimensions) that we can be sure contains the feasible region. Then, try the
center of the ellipse to see if it violates any constraints. If not, you’re done. If it does, then look at
some constraint violated. So we know the solution (if any) is contained in the remaining at-most-
half-ellipse. Now, find a new smaller ellipse that contains that half of our initial ellipse. We then
repeat with the new smaller ellipse. One can show that in each step, you can always create a new
smaller ellipse whose volume is smaller, by at least a (1 − 1/n) factor, than the original ellipse.
So, every n steps, the volume has dropped by about a factor of 1/e. One can then show that if
you ever get too small a volume, as a function of the number of bits used in the coefficients of the
constraints, then that means there is no solution after all.

One nice thing about the Ellipsoid Algorithm is you just need to tell if the current solution violates
any constraints or not, and if so, to produce one. You don’t need to explicitly write them all down.
There are some problems that you can write as a linear program with an exponential number
of constraints if you had to write them down explicitly, but where there is an fast algorithm to
determine if a proposed solution violates any constraints and if so to produce one. For these kinds
of problems, the Ellipsoid Algorithm is a good one.

Karmarkar’s Algorithm: Karmarkar’s Algorithms sort of has aspects of both. It works with
feasible points but doesn’t go from corner to corner. Instead it moves inside the interior of the
feasible region. It was one of first of a whole class of so-called “interior-point” methods.

The development of better and better algorithms is a big ongoing area of research. In practice, for
all of these algorithms, you get a lot of mileage by using good data structures to speed up the time
needed for making each decision.
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