
15-451/651: Design & Analysis of Algorithms October 20, 2014
Lecture #14: Linear Programming II last changed: October 20, 2014

In this lecture discuss the general notion of Linear Programming Duality, a powerful tool that you
should definitely master.

1 Linear Programming Duality

Consider the following LP

P = max(2x1 + 3x2)

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

(1)

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

In an attempt to solve P we can produce upper bounds on its optimal value.

• Since 2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12, we know OPT(P ) ≤ 12. (The first inequality uses that
2x1 ≤ 4x1 because x1 ≥ 0, and similarly 3x2 ≤ 8x2 because x2 ≥ 0.)

• Since 2x1 + 3x2 ≤ 1
2(4x1 + 8x2) ≤ 6, we know OPT(P ) ≤ 6.

• Since 2x1 + 3x2 ≤ 1
3((4x1 + 8x2) + (2x1 + x2)) ≤ 5, we know OPT(P ) ≤ 5.

In each of these cases we take a positive1 linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3x2.

1Why positive? If you multiply by a negative value, the sign of the inequality changes.

1



How do we find the “best” lower bound that can be achieved as a linear combination of the
constraints? This is just another algorithmic problem, and we can systematically solve it, by
letting y1, y2, y3 be the (unknown) coefficients of our linear combination. Then we must have

4y1 + 2y2 + 3y2 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

(2)

and we seek min(12y1 + 3y2 + 4y3)

This too is an LP! We refer to this LP (2) as the “dual” and the original LP 1 as the “primal”.
We designed the dual to serve as a method of constructing an upper bound on the optimal value of
the primal, so if y is a feasible solution for the dual and x is a feasible solution for the primal, then
2x1 + 3x2 ≤ 12y1 + 3y2 + 4y3. If we can find two feasible solutions that make these equal, then we
know we have found the optimal values of these LP.

In this case the feasible solutions x1 = 1
2 , x2 = 5

4 and y1 = 5
16 , y2 = 0, y3 = 1

4 give the same value
4.75, which therefore must be the optimal value.

Exercise 1: The dual LP is a minimization LP, where the constraints are of the form lhsi ≥ rhsi. You
can try to give lower bounds on the optimal value of this LP by taking positive linear combinations of
these constraints. E.g., argue that

12y1 + 3y2 + 4y3 ≥ 4y1 + 2y2 + 3y2 ≥ 2

(since yi ≥ 0 for all i) and
12y1 + 3y2 + 4y3 ≥ 8y1 + y2 + 2y3 ≥ 3

and

12y1 + 3y2 + 4y3 ≥ 2

3
(4y1 + 2y2 + 3y2) + (8y1 + y2 + 2y3) ≥ 4

3
+ 3 = 4

1

3
.

Formulate the problem of finding the best lower bound obtained by linear combinations of the given
inequalities as an LP. Show that the resulting LP is the same as the primal LP 1.

Exercise 2: Consider the LP:

P = max(7x1 − x2 + 5x3)

s.t. x1 + x2 + 4x3 ≤ 8

3x1 − x2 + 2x3 ≤ 3

2x1 + 5x2 − x3 ≤ −7

x1, x2, x3 ≥ 0

Show that the problem of finding the best upper bound by linear combinations of the constraints can
be written as the following dual LP:

D = min(8y1 + 3y2 − 7y3)

s.t. y1 + 3y2 + 2y3 ≥ 7

y1 − y2 + 5y3 ≥ −1

4y1 + 2y2 − y3 ≥ 5

y1, y2, y3 ≥ 0

Also, now formulate the problem of finding a lower bound for the dual LP. Show this lower-bounding
LP is just the primal (P).

2



1.1 The Method

Consider the examples/exercises above. In all of them, we started off with a “primal” maximization
LP:

maximize cTx (3)

subject to Ax ≤ b

x ≥ 0,

The constraint x ≥ 0 is just short-hand for saying that the x variables are constrained to be
non-negative.2 And to get the best lower bound we generated a “dual” minimization LP:

minimize rTy (4)

subject to Py ≥ q

y ≥ 0,

The important thing is: this matrix P , and vectors q, r are not just any vectors. Look carefully:
P = AT . q = c and r = b. The dual is in fact:

minimize yTb (5)

subject to yTA ≥ cT

y ≥ 0,

And if you take the dual of (5) to try to get the best lower bound on this LP, you’ll get (4). The
dual of the dual is the primal. The dual and the primal are best upper/lower bounds you can obtain
as linear combinations of the inputs.

The natural question is: maybe we can obtain better bounds if we combine the inequalities in more
complicated ways, not just using linear combinations. Or do we obtain optimal bounds using just
linear combinations? In fact, we get optimal bounds using just linear combinations, as the next
theorems show.

1.2 The Theorems

It is easy to show that the dual (5) provides an upper bound on the value of the primal (4):

Theorem 1 (Weak Duality) If x is a feasible solution to the primal LP (4) and y is a feasible
solution to the dual LP (5) then

cTx ≤ yTb.

Proof: This is just a sequence of trivial inequalities that follow from the LPs above:

cTx ≤ (yTA)x = yT (Ax) ≤ yT b.

�

The amazing (and deep) result here is to show that the dual actually gives a perfect upper bound
on the primal (assuming some mild conditions).

2We use the convention that vectors like c and x are column vectors. So cT is a row vector, and thus cTx is
the same as the inner product c · x =

∑
i cixi. We often use cTx and c · x interchangeably. Also, a ≤ b means

component-wise inequality, i.e., ai ≤ bi for all i.

3



Theorem 2 (Strong Duality Theorem) Suppose the primal LP (4) is feasible (i.e., it has at
least one solution) and bounded (i.e., the optimal value is not ∞). Then the dual LP (5) is also
feasible and bounded. Moreover, if x∗ is the optimal primal solution, and y∗ is the optimal dual
solution, then

cTx∗ = (y∗)Tb.

In other words, the maximum of the primal equals the minimum of the dual.

Why is this useful? If I wanted to prove to you that x∗ was an optimal solution to the primal, I
could give you the solution y∗, and you could check that x∗ was feasible for the primal, y∗ feasible
for the dual, and they have equal objective function values.

This min-max relationship is like in the case of s-t flows: the maximum of the flow equals the
minimum of the cut. Or like in the case of zero-sum games: the payoff for the maxmin-optimum
strategy of the row player equals the (negative) of the payoff of the maxmin-optimal strategy of
the column player. Indeed, both these things are just special cases of strong duality!

We will not prove Theorem 2 in this course, though the proof is not difficult. But let’s give a
geometric intuition of why this is true in the next section.

1.3 A Geometric Viewpoint

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize cTx (6)

subject to Ax ≤ b

Given two constraints like a1 · x ≤ b1 and a2 · x ≤ b2, notice that you can add them to create more
constraints that have to hold, like (a1 + a2) · x ≤ b1 + b2, or (0.7a1 + 2.9a2) · x ≤ (0.7b1 + 2.9b2).
In fact, any positive linear combination has to hold.

To get a feel of what this looks like geometrically, say we start with constraints x1 ≤ 1 and x2 ≤ 1.
These imply x1 + x2 ≤ 2 (the red inequality), x1 + 2x2 ≤ 3 (the green one), etc.

x2 ≤ 1

x1 ≤ 1
x1 + x2 ≤ 2

x1 + 2x2 ≤ 3

0

(0, 0)

1 2

1

2

In fact, you can create any constraint running through the intersection point (1, 1) that has the
entire feasible region on one side by using different positive linear combinations of these inequalities.

Now, suppose you have the LP (6) in n variables with objective c ·x to maximize. As we mentioned
when talking about the simplex algorithm, unless the feasible region is unbounded (and let’s assume

4



for this entire discussion that the feasible region is bounded), the optimum point will occur at some
vertex x∗ of the feasible region, which is an intersection of n of the constraints, and have some
value v∗ = c · x∗.
Consider the n inequality constraints that define the vertex x∗, say these are

a1 · x ≤ b1, a2 · x ≤ b2, . . . , an · x ≤ bn,

so that for each i ∈ {1, 2, . . . , n} the point x∗ satisfies the equalities

a1 · x = b1, a2 · x = b2, . . . , an · x = bn.

Just as in the simple example above, if you take these n inequality constraints that define the
vertex x∗ and look at all positive linear combinations of these, you can again create any constraint
you want going through x∗ that has the entire feasible region on one side. One such constraint is
c · x ≤ v∗. It goes through x∗ (since we have c · x∗ = v∗) and every point in the feasible region
is contained in it (since no feasible point has value more than v∗). So it is possible to create the
constraint c · x ≤ v∗ using some positive linear combination of the ai · x ≤ bi constraints.

Why is this interesting?

We’ve shown a short proof (a “succinct certificate”) that x∗ is optimal. Indeed, if I gave you a
solution x∗ and claimed it was optimal for the given constraints and the objective function c · x,
it is not clear how I would convince you of x’s optimality. In 2-dimensions I could draw a figure,
but in higher dimensions things get more difficult. But we’ve just shown that I can take a positive
linear combination of the given constraints ai · x ≤ bi and create the constraint c · x ≤ v∗ = c · x∗,
hence showing we can’t do any better.

How do we find this positive linear combination of the constraints? Hey, it’s actually just another
linear program. Indeed, suppose we want to find the best possible bound c · x ≤ v for as small a
value v as possible. Say the original LP had the m constraints

a1 · x ≤ b1, a2 · x ≤ b2, . . . , am · x ≤ bm,

written compactly as Ax ≤ b.

What’s our goal? We want to find positive values y1, y2, . . . , ym such that∑
i

yiai = c.

From this positive linear combination we can infer the upper bound

c · x = (
∑
i

yiai) · x ≤
∑
i

yibi.

And we want this upper bound to be as “tight” (i.e., small) as possible, so let’s solve the LP:

min
∑
i

biyi subject to
∑
i

yiai = c.

(In matrix notation, if y is a m × 1 column vector consisting of the yi variables, then we want to
minimize yTb subject to yTA = c.) This is yet again the same process as in the example at the
beginning of lecture.

5



Let us summarize: we started off with the “primal” LP,

maximize cTx (7)

subject to Ax ≤ b

and were trying to find the best bound on the optimal value of this LP. And to do this, we wrote
the “dual” LP:

minimize yTb (8)

subject to yTA = cT

y ≥ 0.

Note that this primal/dual pair looks slightly different from the pair (4) and (5). There the primal
had non-negativity constraints, and the dual had an inequality. Here the variables of the primal
are allowed to be negative, and the dual has equalities. But these are just cosmetic differences; the
basic principles are the same.

2 Example #1: Shortest Paths

Duality allows us to write problems in multiple ways, which gives us power and flexibility. For
instance, let us see two ways of writing the shortest s-t path problem, and why they are equal.

Here is an LP for computing an s-t shortest path with respect to the edge lengths w(u, v):

max dt (9)

subject to ds = 0

dv − du ≤ `(u, v) ∀(u, v) ∈ E

The constaints are the natural ones: the shortest distance from s to s is zero. And if the s-u
distance is du, the s-v distance is at most du + `(u, v) — i.e., dv ≤ du + `(u, v). It’s like putting
strings of length `(u, v) between u, v and then trying to send t as far from s as possible—the farthest
you can send t from s is when the shortest s-t path becomes tight.

Here is another LP that also computes the s-t shortest path:

LPt := min
∑

e `eye (10)

subject to
∑

w:(s,w)∈E ysw = 1∑
v:(v,t)∈E yvt = 1∑
v:(u,v)∈E yuv =

∑
v:(v,w)∈E yvw ∀w ∈ V \ {s, t} (11)

ye ≥ 0.

In this one we’re sending one unit of flow from s to t, where the cost of sending a unit of flow on
an edge equals its length `e. Naturally the cheapest way to send this flow is along a shortest s-t
path length. So both the LPs should compute the same value.

6



2.1 Duals of Each Other

Take the first LP. Since we’re setting ds to zero, we could hard-wire this fact into the LP and
rewrite it as

max dt (12)

subject to dv − du ≤ `(u, v) ∀(u, v) ∈ E, s 6∈ {u, v}
dv ≤ `(s, v) ∀(s, v) ∈ E

−du ≤ `(u, s) ∀(u, s) ∈ E

How to find an upper bound on the value of this LP? Let us define Eout
s := {(s, v) ∈ E}, Ein

s :=
{(u, s) ∈ E}, and Erest := E \ (Eout

s ∪Ein
s ). For every arc e = (u, v) we will have a variable ye. We

want to get the best upper bound on dt by linear combinations of the the constraints, so we should
find a solution to ∑

e∈Erest

yuv(dv − du) +
∑

e∈Eout
s

ysvdv −
∑

e∈Ein
s

yusdu = dt (13)

(this is like yTA = c) and we want to

minimize
∑

(u,v)∈E

yuv `(u, v). (14)

(This is like minyTb.) Hey, the objective function (14) is exactly what we want, but what about
the craziness in (13)? Let’s see what it is saying. Just collect all copies of each of the variables dv,
and it’s saying ∑

v 6=s

dv

 ∑
u:(u,v)∈E

yuz −
∑

w:(v,w)∈E

yvw

 = dt.

and since these equalities must hold regardless of the dv values, this is really the same as∑
u:(u,v)∈E

yuv −
∑

w:(v,w)∈E

yvw = 0 ∀v 6∈ {s, t}. (15)

∑
u:(u,v)∈E

yut −
∑

w:(t,w)∈E

ytw = 1.

So we’ve got the LP with objective function (14) and constraints (15), which is exactly the same
alternate LP (10) we wrote earlier!

7


	Linear Programming Duality
	The Method
	The Theorems
	A Geometric Viewpoint

	Example #1: Shortest Paths
	Duals of Each Other


