15-451 Algorithms
Fall 2012
D. Sleator

Suffix Trees and Suffix Arrays December 4, 2012

References:
Algorithms on Strings Trees and Sequences by Dan Gusfield
http://courses.csail.mit.edu/6.897/spring03/scribe_notes/L10/lecturel0.pdf
http://courses.csail.mit.edu/6.897/spring03/scribe_notes/Ll1l/lecturell.pdf

Outline:

Suffix Trees
definition
properties (i.e. O(n) space)
applications
suffix Arrays
definition
how to compute a suffix array (and prefix length array)
in O(n log”2 n) time
how to convert this into a suffix tree in O(n) time

Consider a string s of length n (long). Our goal is to preprocess s
to allow various kinds of queries on the string to be done
efficiently.

The most basic example of which is simply this: given a pattern p,
find all occurrences of p in s. The time should be O(|p| + k) where k
is the number of occurrences of p in s.

An ideal solution to this problem will take O(n) time to do the
preprocessing, and O(n) space to store the data structure.

suffix trees are a solution to this problem, with all these ideal
properties. They can be used to solve many other problems as well.

[In this lecture, we’'re going to consider the alphabet size to be 0(1)]

A trie is a data structure for storing a set of strings. Each edge of
the tree is labeled with a character of the alphabet. Each node then
implicitly represents a certain string of characters. Specifically a
node N represents the string of letters on the edges that we follow to
get from the root to N. Each node has a bit in it that indicates
whether the path from the root to this node is a member of the set.

Since our alphabet is small, we can use an array of pointers at each
node to point at the subtrees of it. So to determine if a pattern p
occurs in our set we simply traverse down from the root of the tree
one character at a time until we either (1) walk off the bottom of the
tree, in which case p does not occur, or (2) we stop at some node M.
If M is marked, then p is in our set, otherwise it is not.

This process takes O(|p|) time because each step simply looks up the
next character of p in an array of child pointers from the current
node.

Note that if we were to keep a count at each node of the number of
marked nodes in the subtree rooted there, we could then efficiently

determine for a pattern p, how many members of my set of strings begin
with the characters of p.

Now, returning to suffix trees

Our first attempt to build a data structure that solves this problem
is to build a trie which stores all the strings which are suffixes of
the given string s. It’s going to be useful to avoid having one
suffix match the beginning of another suffix. So in order to avoid
this we will affix a special character denoted "$" at the end of the
string s, which occurs nowhere else in s. (This character is
lexicographically less than any other character.)

Suppose we build a trie as described above using all the suffixes of
s, and we added the counts as described above to the trie.

Now given a pattern p, we can count the number of occurrences of p in
s in O(|p|) time. We just walk down the trie and when we run out of p
we look at the count of the node we’'re sitting on. It’s our answer.

But there are a number of problems with this solution. First of all,
the space to store this data structure could be as large as O(n"2).
And it will also take too long to build it. Also, it’s unsatisfactory
in that it does not tell us where in s these patterns occur.

Because no string occurs as a prefix of any other, we can divide the
nodes of our trie into internal and leaf nodes. The leaf nodes have
no children, and represent a suffix of s. So we can have the leaf
node point to the place in s where the given suffix begins.

We can also get the space consumption down to O(n). Suppose in the
trie there is a long path with branching factor 1 at each node on that
path. That string of characters must occur in s, so we can represent
it implicitly by a pair of pointers into the string s. So an edge

is now labeled with a pair of indices into s instead of just a single
character.

{ghost$, ghoul$}

gho

st$ uls

- O+0<=0

Uncompressed and compressed tries for ghost and ghoul

This representation uses O(n) space. (We count pointers as O(1)
space.) One nice way to see this is to imagine building this data
structure by adding suffixes into it one at a time. To add a new
suffix, we walk down the current tree until we come to a place where
the path leads off of the current tree. (This must occur because the
suffix is not already in the tree.) This could happen in the middle
of an edge, or at an already existing node. In the former case, we
split the edge in two and add a new node with a branching factor of 2
in the middle of it. 1In the latter case we simply add a new edge from
an already existing node. In either case the process terminates. The
number of nodes in the tree is thus O(n).

Lookup for an in suffix tree for banana
Suffix tree for banana

The running time of this naive construction algorithm is still
o(n~2). We’ll talk more later about how to make this more efficient.

Other Applications of Suffix Trees

There are many other applications of suffix trees to practical
problems on strings. Gusfield discusses many of these in his book.
I'll just mention a couple here.

1. Longest Common Substring of Two Strings

Given two strings s and t, what is the longest substring that occurs
in both of them. For example if a="boogie" and b="ogre" then the
answer is "og". The question is how to compute this efficiently.
And the answer is to use suffix trees. Here’'s how.

Construct a new string s = a%b. That is, concatenate a and b together
with an intervening special character that occurs nowhere else
(indicated here by "%"). Now construct the suffix tree for s. Every
leaf of the suffix tree represents a suffix that begins in a or in b.
Mark every internal node with two bits: one that indicates that this
subtree contains a substring of a, and another for b. These marks can
be computed by depth first search (linear time). Now take the deepest
(in the sense of the longest string path length in the suffix tree)
node in the suffix tree that has both marks. This tells you the

the longest common substring.

It was believed by Knuth prior to suffix trees that this problem could

not be solved in linear time.

2. Finding all Maximal Palindromes

A maximal palindrome in a string s is a palindrome which cannot be

extended by grabbing another character of s on each end.
Gusfield explains on pages 197 and 198 how to find all of these in
O(n) time.

Computing the Suffix Tree

I’'ll explain how to compute the suffix tree from two other constructs
of the string s. They are the suffix array and the prefix length
array.

Imagine that you write down all the suffixes of a string s. The ith
suffix is the one that begins at position i. Now imagine that you
sort all of these suffixes. And you write down the indices of them in
an array in their sorted order. This is the suffix array.

Example: s=banana$

0 1 2 3 4 5 &
b a n a n a §

6: S

5: a$

3: ana$

1: anana$

0: Dbanana$

4: na$

2: nana$

So the suffix array is: 6 5 3 1 0 4 2

Each successive suffix in this order matches the previous one in some
number of letters. This is called the common prefix lengths array.
In this case we have:

suffix array is: 6531042
common prefix lengths array 013002

Given these two things, the suffix tree can be computed in linear
time.

We add the suffixes one at a time into a partially built suffix tree
in the order that they appear in the suffix array. We keep at any
point in time the sequence of nodes on the path from the most recently
added leaf to the root. To add the next suffix, we find where its
path deviates from the current one. To do this we use the common
prefix length value. We walk up the path until we pass this prefix
length. This tells us where to add the new node.

The time to build the suffix tree in this fashion is the same as the
time it takes to traverse the suffix tree from left to right. That
is, it’s linear time.

So how do we compute the suffix array and the common prefix lengths
array? There are linear time algorithms for this, but here I will
describe a probabilistic method that is O(n log”2 n).

It’'s based on Karp-Rabin fingerprinting. If we could compare two
suffixes in O(1l) time we could then just sort them in O(n log n) time.
Instead use a method for comparing two suffixes that works in O(log n)
time.

Using Karp-Rabin fingerprinting we can in O(l) time (as I explained in
the last lecture) compare two substrings for equality. To compare two
suffixes for lexicographic order, we use binary search to find the

shortest length R such that the first R characters of each of the
suffixes differ, but the first R-1 characters of them are the same.
Then the lexicographic order is determined by the Rth character of
them. Furthermore this also tells us the common prefix length between
the two strings.

Here's a java implementation of this technique.

/*
O(n log~2(n) algorithm to compute the suffix array of a string based on
Karp-Rabin fingerprinting.

D. Sleator Dec 4, 2012

=/
import java.io.*;
import java.util.*;

public class Suffix Array ({
static final long P = 1000000007;
static long[] p; // pl[i] = P*i modulo 2"64
static long[] a; // a[i] s[i-1]1*p[0] + s[i-2]*p[l] + ... + s[0]*p[i-1]
static char([] s;
static int n;

static long hh(int x, int y) {
/* Assumes x<=y. Let k = y-x. This function returns
* s[x]*p[0] + s[x+1]*p[l] + ... + s[yl*p[k].
* In other words, it’s the hash function from x to y inclusive
*/
return a[y+l]-a[x]*p[y-x+t1];

}

static int pre_len; /* a side effect of comp, which is the common prefix
length of the two strings just compared */

static int comp (int x, int y) {
/* Compare the two strings which are the suffix of s beginning
* at x and beginning at y. Return <0, 0, or >0 depending
* on the outcome. (Actually in this context they can’t be equal.)
*i
int R = Math.min(n-x-1,n-y-1);
int L=0;
while(L<R) {
/* Loop invariant:
* these two strings are equal: x[0..L-1], y[0..L-1]
* these two strings are not equal x[0..R], y[0..R]
*/
int M=(L+R+1)/2;
if (hh(x,x+M-1) == hh(y,y+M-1)) L=M; else R=M-1;
}
pre_len = R;
return s[x+R] - s[y*+R];
h

public static void main(String[] args) {

if (args.length <= 0) {
System.out.printf("Supply a string\n");
System.exit(1l);

}

String input = args[0] + "\0";

s = input.toCharArray();

n = s.length;

p = new long[n+l];
a = new long[n+l];

/* precompute p[] and a[] to make hh() work in O(l) time */
p[0]=1;

for(int i=1; i<=n; i++) p[i] = p[i-1] * P;

for(int i=1; i<=n; i++) a[i]=a[i-1]*P+s[i-1];

Integer[] perm = new Integer([n];
for (int i=0; i<n; i++) perm[i] = 1i;

Arrays.sort(perm, new Comparator<Integer>() {
public int compare(Integer A, Integer B) {return comp(A,B);}

)i

int[] prefix = new int[n-1];

for (int i=0; i<n-1; i++) {
comp(perm[i],perm[i+l]);
prefix[i] = pre_len;

}

System.out.printf("Suffix Array: ");
for(int i=0; i<n; i++) {
System.out.printf("%d ", perm[i]);

}
System.out.println();

System.out.printf("Common Prefix Lengths: ");
for(int i=0; i<n-1; i++) {
System.out.printf("%d ", prefix[i]);

}
System.out.println();

g

Sample Runs:

$ java Suffix Array "banana"
suffix Array: 6 5 3 1 0 4 2
Common Prefix Lengths: 0 1 3 0 0 2

$ java Suffix Array "mississippi”
Suffix Array: 11 10 7 4 1 0 9 8 6 3 5 2
Common Prefix Lengths: 0 1140010213

$ java Suffix Array "1111000011110000"
Suffix Array: 16 15 14 13 12 4 5 6 7 11 3 10

29180
Common Prefix Lengths: 01 2 3 4 3 21051627 38

