Computational Geometry

15-451 CMU Fall 2014 NOU (2-/ 2014

Danny Sleator
Some of this material came from notes by Gary Miller

Boilerplate:

What is Computational Geometry(CG)?

Why CG in algorithms class?

Where is CG used?
At present CG is the design and analysis of algorithm for geometric
problems that arise on low dimensions, 2 or 3. Most algorithms work
well in 2D while 3D problems are not as well understood.
CG will us to see our old algorithms in use and see new ones.
Some application of CG are:
Computer Graphics

images creation

hidden surface removal

illumination

Robotics
motion planning

Geographic Information Systems
Height of mountains
vegetation
population
cities, roads, electric lines
CAD/CAM computer aided design/computer aided manufacturing
Computer chip design and simulations
Scientific Computation

Blood flow simulations
Molecular modeling and simulations

Basic approach used by computers to handle complex geometric objects

Decompose the object into a large number of very simple objects
with simple interactions.

Examples:
* An image might be a 2D array of dots.
* An integrated circuit is a planar triangulation.
* Mickey Mouse is a surface of triangles
Basic algorithmic design approaches
Divide-and-Conquer
* There are two different types of Divide-and-Conquer.
e.g. Merge sort
e.g. Quick sort
* Line-Sweep in 2D.

* Random Incremental

We will have three lectures on computational geometry:

2D convex hull of a point set

random incremental algorithm for closest pair

divide and conquer algorithm for closest pair

sweep line algorithm for intersecting a set of segments

an expected linear time algorithm for 2D linear programming.

* % % %

First we discuss what abstract object we will need and their
representation

Abstract Object | Representation

Real Number | Floating Point, Big Number

Point Pair of Reals

Line Pair of Points, A set of constraints
Line Segment Pair of Points, A set of constraints
Triangle Triple of Points, etc

Using points to generate objects

SUPFOQG' PUP},“' ’V]c = I

, ‘-";V-'Qa A Com é;na\r{;OMS’_

{

S ade #1 sl bé/f
gubs‘pafe o Z_ Q‘/: ?(Fovr o N

A ; 7{ ‘;iﬂp CO s b

C"ﬂf"’ - Z ZO{(‘:I \, Wn‘&R

o goszﬂ‘ Hfr/ow/yzr /
ohgb'z@}

Primitive Operations

1) Equality P=Q? (Can be hard in practice due to round-off error)
2) Line side tests

Input: P1,P2,P3

Output: LEFT If P3 is to the left of ray Pl -> P2
RIGHT If P3 is to the right of ray Pl -> P2
ON If P3 is to on ray Pl -> P2

Subtract P1 from both of the other vectors.

Let V2 = P2-P1 and V3 = P3-Pl. Now the cross

product V2xV3 is the signed area of the parallogram
formed by V2 and V3. This area is > 0 if and only if
P3 is left of ray Pl -> P2.

v2
i e *
/ /
/ /
s /
R *V3
————————————————————————— Ocaml Code---—=——cmmmm e __
let (--) (x1l,yl) (x2,y2) = (x1-x2, yl-y2)
let (++) (x1,yl) (x2,y2) = (x1l+x2, yl+y2)

(x1*y2) - (yl*x2)

let cross (x1,yl) (x2,y2) =
= (xX1*x2) + (yl*y2)

let dot (x1,yl) (x2,y2)
type side = LEFT | ON | RIGHT

let line_side_test pl p2 p3 =
let cp = cross (p2--pl) (p3--pl) in
if cp > 0 then LEFT else if cp < 0 then RIGHT else ON

3) Line segment intersection testing

We can use line side tests to answer this. Test that Pl and P2
are on opposite sides of the line (P3,P4), and that P3 and P4 are
on opposite sides of the line (P1, P2).

let area (p,q) r = cross (g--p) (r--p)

let sign x = compare x 0

let segments_intersect (a,b) (c,d) =
(sign (area (a,b) c)) * (sign (area (b,a) d)) > 0 &&
(sign (area (c,d) b)) * (sign (area (d,c) a)) > 0

4) In-circle test
Input: (P1,P2,P3,P4)
Output: Determines the relationship of P4 to the circle thru (P1,P2,P3)

(* This returns 0 if the four points are on the same circle.
I walk around the circle with my right hand on the circle
from a --> b --> ¢. It returns >0 if d is on the same side
as my body, and <0 otherwise. 1It’s a fourth degree function
in the given coordinates. See http://www.cs.cmu.edu/ quake/robust.html

let incircle (ax,ay) (bx,by) (cx,cy) (dx,dy) =
let det ((a,b,c),(d,e,f),(g,h,1i)) =
a**{e**i R f**h) PR b**(d**i [f**g) ++ C**(d**h -— e**qg)
in

let row ax dx ay dy =
let a = ax -- dx in
let b = ay -- dy in
~ (a, b, (sq a) ++ (sq b))
in
det (row ax dx ay dy, row bx dx by dy, row cx dx cy dy)

Incircle "
-

: I / ® \
Does d l1e on. 1inside .01 | d '

Or ?l||'~lk‘i‘ 8) rff}: !/ \ b/

The Convex Hull Problem
The sorting problem of CG.
A point set A subset R"d is convex if it is closed under convex
combinations. That is, if we take any convex combination of any two
points in A, the result is a point in A.

DEF: ConvexClosure(A) = CC(A) = smallest convex set containing A

There are two different definition of the convex hull. The first one
is the one we will use. The second is used by some books.

DEFl: ConvexHull (A) boundary of CC(A)

DEF2: ConvexHull (A) CC(A)

A computer representation of a convex hull must include the
combinatorial structure. In two dimensions, this just means a simple
polygon in, say counter clockwise order. 1In many of our algorithms
we’'ll need to be able to traverse the hull in either direction
starting form a vertex or an edge. We'’ll also need to be able to add
and delete points and edges. These operations are all easily done in
constant time with the appropriate representation.

*)

2D Convex Hulls by divide and conquer

Let the points be Pl...Pn, where Pi = (xi, yi)

Preprocess the points by sorting all of them by

their x coordinates. (This step happens just once. In all
recrusive calls, we can assume the points are sorted.)

Now recursively compute the convex hull

of {Pl...Pn/2}, call it LH, and and {Pn/2+l...Pn}
call it RH.

L \ oz

r“ —
ff — - l\
!/ i \
/ - 2
/ .-”I g \‘
AL - |
A \
i S 2 \
- = —— = \
i e, S ... S

Now the problem is to stitch the left and right halves together to
form a hull for all the points. Here’s how to do this:

Let A be the rightmost point in LH and B be the leftmost point in
RH. Start with the line segment [A,B]. Let A’ be the next point
clockwise around the LH from A. Consider the three points
[B,A,A"] if this is a left turn then A = A’ and continue. If

it’s a right turn, then stop. Now do the analogous walk around RH
starting from B. If at some point neither walk can proceed, the
segment [A,B] is the new segment to be added to the CH of all the
points on the bottom.

An analogous algorithm suffices to compute the new edge to be added
on top of the hull. Once these new edges are found, the new convex
hull is stitched together form the relevant parts.

Preprocessing takes O(n log n) to sort. After that it’s a standard
divide and conquer algorithm with the following recurrence:

T(n) = 2T(n/2) + n

This solves to O(n log n).

Graham Scan for 2D convex hulls

Here'’s another algorithm. The input points are P1, P2, ... Pn.
Find the point with the smallest Y coordinate and swap it with P1.
Now for each point Pi, compute the angle of the ray Pl-->Pi, and
sort the points by this angle. (These angles are all between 0 and
pi.)

Start with segment P1--->P2. 1In general there will be a sequence of
segments, starting from P1, P2 Each turn in this sequence is a
left turn. Our goal is to process a new point, and add it onto this
sequence.

Here’s the algorithm. Add the new point Pi to the end of this
sequence. If the sequence of segments now has a right turn at the
end, then delete the second to last point of this sequence. Repeat
this process until the sequence is restored to one that has only left
turns. The direction of a turn can be done using a line side test.

After all the points are processed in this way, we can just add the
last segment from Pn to Pl, to close the polygon, which will be the
convex hull.

Each point can be added at most once to the sequence of vertices, and

each point can be removed at most once. Thus the running time of the scan
is O(n). But remember we already paid O(n 1lg n) for sorting the points at
the beginning of the algorithm, which makes the overall running time of the
algorithm be O(n lg n).

(Alternatively, keep a token on each edge of the current edge

sequence. Use the token to pay for a segment’s removal. Adding a new
segment is one unit of work, plus another token to keep on it.)

Complete ocaml code for the graham scan is at the end of these notes.
Lower bound for compute the convex hull
Suppose the input to a sorting problem are the number X1, ..., Xn
Consider the convex hull problem:

2 2
(%1 XL b sus (¥ En 9
The convex hull of these points must return them in sorted order.
Thus:

Any comparison based CH algorithm must make Omega(n log n)
comparisons.

QuickSort and Backwards Analysis

Before we present and analyze a simple randomized CH algorithm, let’s
go back and look at another way to analyze QuickSort called Backwards
Analysis.

We assume that the keys are distinct

Recall randomized QuickSort:

QS (M)
1) pick random b in M
2) split M into S and L with S < b < L
3) return [QS(S), b, QS(L)]

The cost of the call QS(M) (Not counting recursive calls) is the size
of the array M minus 1. (This is how many comparisons are done.)

To do the backwards analysis we propose a simple game with a cost
function that has the same behavior.

Consider a dart board with n empty squares.

All n squares start out empty.
The dart game proceeds as follows:

While there exists a empty square do:
Pick an empty square at random. Put a dart into it. The cost
of the step is the number empty squares to the left and right
of the new dart.

The expected cost of this game is exactly the same as the expected
cost of randomized quicksort. Why? Let’s prove this by induction.

In the base case, n=0 or n=1. In this case QS(M) costs zero and the
dart game costs zero. In the general case, the cost of the first dart
is n-1, and the cost of the top level call to QS(M) is just n-1 (not
counting the costs of the recursive calls). We know that the dart
game eventually fills every cell with a dart. And that the darts to
the right of the first dart have no influence on what happens to the
left of it. So we can rearrange the sequence of darts to put those
that are in the left half first, then those in the right half. This
does not change the cost of the dart game. Now by induction the cost
of the dart game in the left half is the same as quicksorting the left
half. The right half is the same.

The dart game can be played backwards. Here's how to do it.

Layout a dart board with n squares each with a dart.

While there exists a dart on the board do:
Randomly pick a dart. The cost is the number of empty squares
to the left and right of the new dart. Remove the dart.

The only random parameter in the forward dart game is the permutation
that is chosen to add the darts. Similarly the only random parameter
in the reverse dart game is the permutation that is chosen to remove
the darts. Thus if we made a movie of the dart game and watched it
backwards, it would be totally indistinguisable (drawn from the same
distribution) from a movie of the backwards dart game.

Thus, if we can analyze the expected cost of the backwards dart game,
it will tell us the expected cost of the forward dart game (and thus
quicksort).

Let’'s analyze the backwards dart game.
Suppose there are i darts left. Define Ti as follows:

Ti = Expected cost to remove a random dart from a
board of i darts.

One way of computing this cost is to take the total cost of each of
the possibilities (the dart to remove) and divide by the number of
darts (i). The total cost of all possibilities can be computed by
allocating the costs to the empty cells. So when considering the
option of removing a dart d, put a token into each of the empty cells
in the blocks of empty cells to the left and right of d. The number
of tokens distributed is the cost of the option of removing dart d.
The sum of these costs over all darts is the number of tokens on all
the empty cells. It’s easy to see that each empty cell can get at
most two tokens, one from each of the two darts at the boundaries of
that block of empty cells.

Total cost of all options at step i <= 2% (# empty cells) = 2(n-i)
Ti = Average cost of all options at step i <= 2(n-i)/i = 2n/i - 2

Let E_n be the expected cost of the backwards dart game on a
board of size n.

E n

™ + Tn-1 + .. T1

[2n SUM 1/i] - 2n
i = liwan

2nHn - 2n = O(n log n)

This is the same as the cost of the dart game running in the forward
direction, and the expected cost of quicksort.

(* Ocaml code for the Graham Scan convex hull algorithm *)

let (--) (x1,yl) (x2,y2) = (x1-x2, yl-y2)

let (++) (x1,yl) (x2,y2) = (x1+x2, yl+y2)

let cross (x1,yl) (x2,y2) = (x1*y2) - (yl*x2)
let dot (x1,yl) (x2,y2) = (x1*x2) + (yl*y2)

type side = LEFT | ON | RIGHT

let line_side test pl p2 p3 =
let cp = cross (p2--pl) (p3--pl) in
if cp > 0 then LEFT else if cp < 0 then RIGHT else ON

let len (x,y) =
let sg a = a*.a in
let (x,y) = (float x, float y) in
sart ((sq x) +. (sqg y))

let graham convex hull points =
let inf = max_int in
let base = List.fold left min (inf,inf) points in

let points = List.sort (
fun pi pj ->
if pi=pj then 0
else if pi=base then 1
else if pj=base then -1

else
match line_side_test base pi pj with
| oN -> 0
| LEFT -> -1
| RIGHT -> 1

) points in

let rec scan chain points =
let (cl,c2,chainx) = match chain with
| cl::((c2::) as chainx) -> (cl,c2,chainx)
| _ -> failwith "chain must have length at least 2"
in
match points with [] -> chain
| pt::tail ->
match line side test c2 cl pt with
| oN ->
if len (pt--c2) > len (cl--c2)
then scan (pt::chainx) tail
else scan chain tail
| LEFT -> scan (pt::chain) tail
| RIGHT -> scan chainx points
in

match points with
| (Pl:z((_::(_z:)) as rest)) -> List.tl(scan [pl;base] rest);
| _ -> points

let print list 1 =
List.iter (fun (x,y) -> Printf.printf "(%d,%d) " x y) 1;
print_newline()

let () = print_list (graham convex hull [(0,0);(0,2);(2,2);(2,0);(1,1)1)

Running the program:

$ ocamlc graham.ml

$./a.out

(0,2) (2,2) (2,0) (0,0)

