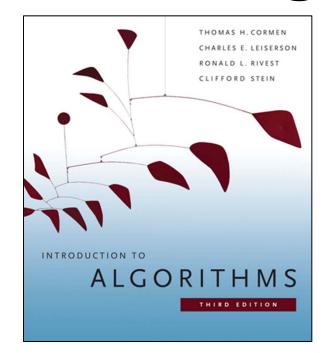
6.006

Introduction to Algorithms



Lecture 24: Geometry Prof. Erik Demaine

Today

- Computational geometry
- Line-segment intersection
 - Sweep-line technique
- Closest pair of points
 - Divide & conquer strikes back!

Motivation: Collision Detection

photo by fotios lindiakos

http://www.flickr.com/photos/fotios_lindiakos/342596118/

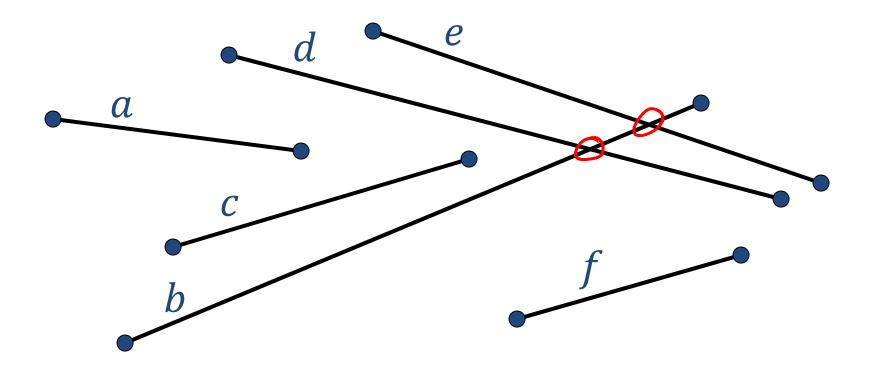
Motivation: Collision Detection

"GTA 4 Carmageddon!" by dot12321

http://www.youtube.com/watch?v=4-620xx7yTo

Line-Segment Intersection

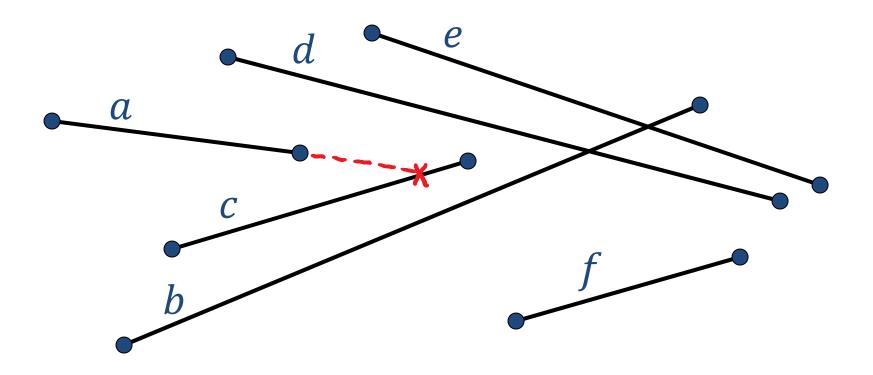
- <u>Input:</u> *n* line segments in 2D
- <u>Goal</u>: Find the *k* intersections



Obvious Algorithm

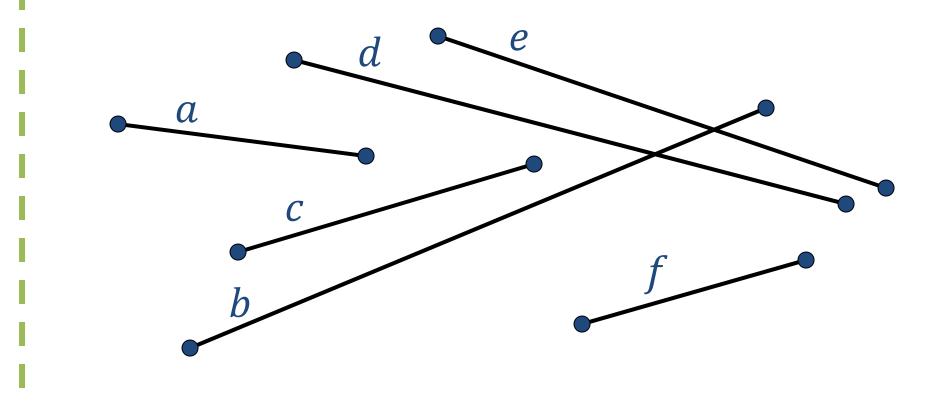
 $O(n^3)$

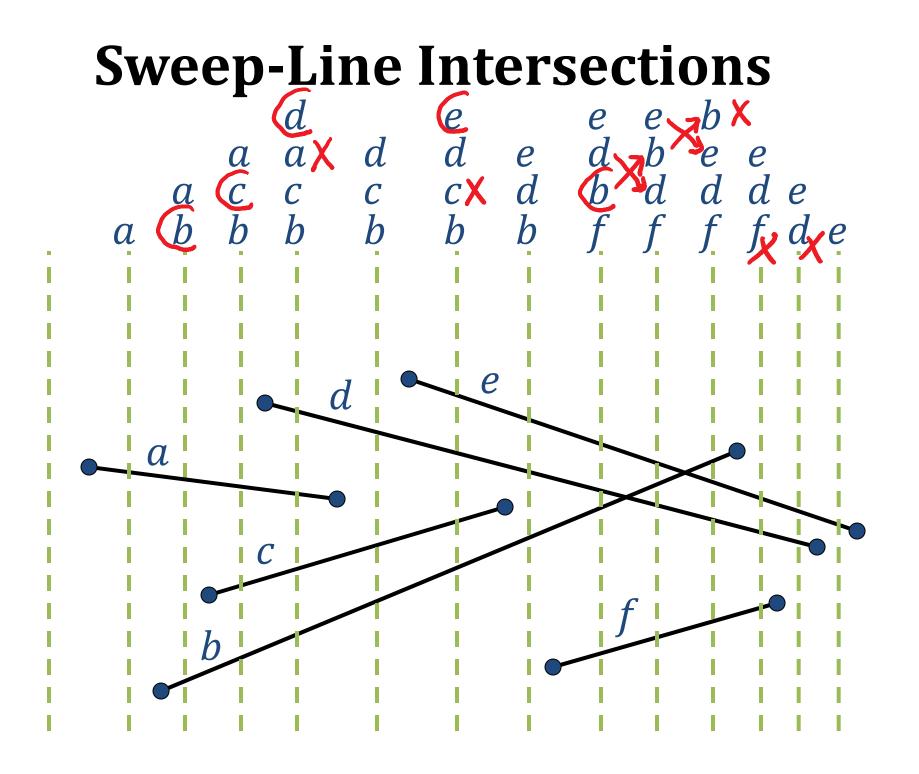
for every pair (ℓ, ℓ') of line segments: check for intersection



Sweep-Line Technique

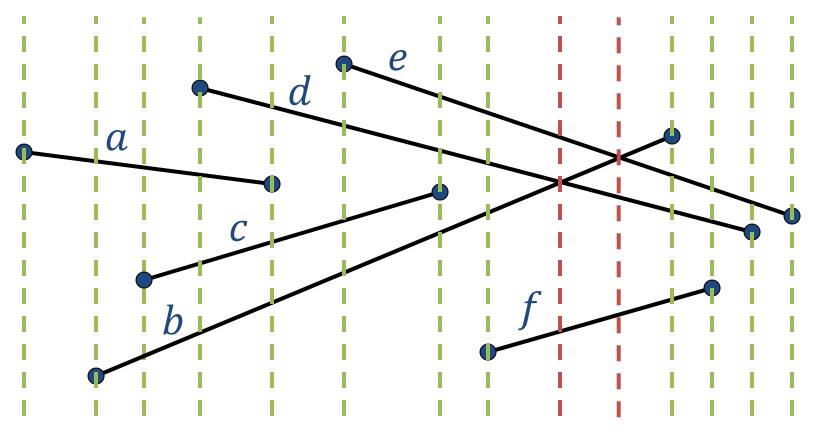
- Idea: Sweep a vertical line from left to right
- Maintain intersection of line with input





Sweep-Line Events

- Discretize continuous motion of sweep line
- *Events* when intersection changes
 - Segment endpoints Intersections



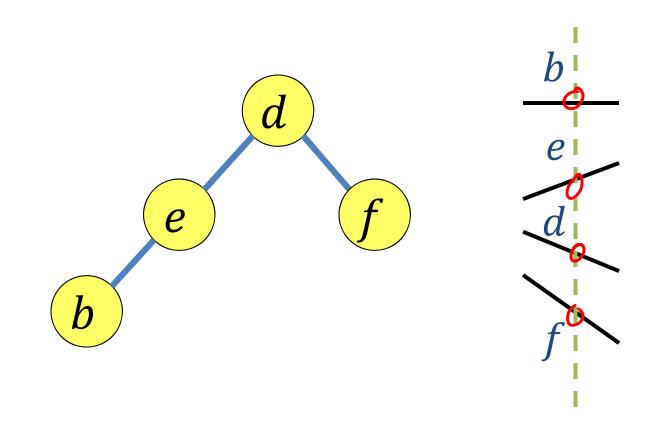
Sweep-Line Algorithm Sketch

- Maintain sweep-line intersection
- Maintain priority queue of (possible) event
 times (= x coordinates of sweep line)
- Until queue is empty:
 - Delete minimum event time *t* from priority queue
 - Update sweep-line intersection from < t to > t
 - Update possible event times in priority queue

"Discrete-event simulation"

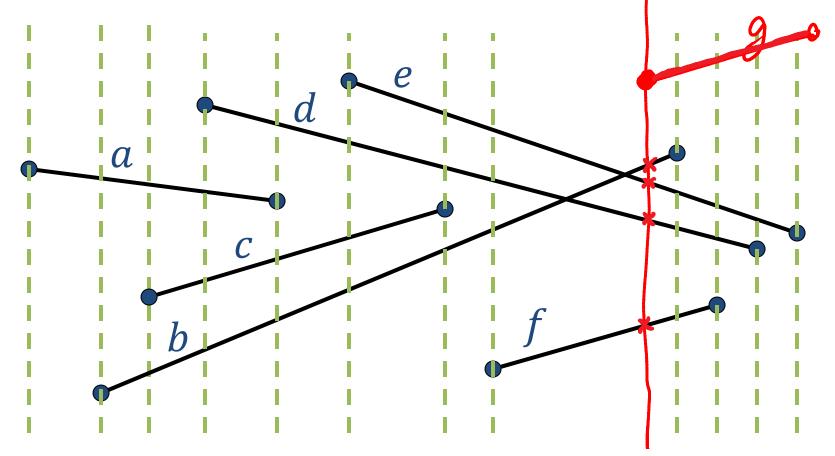
Intersection Data Structure

• Balanced binary search tree (e.g., AVL tree) to store sorted (y) order of intersections



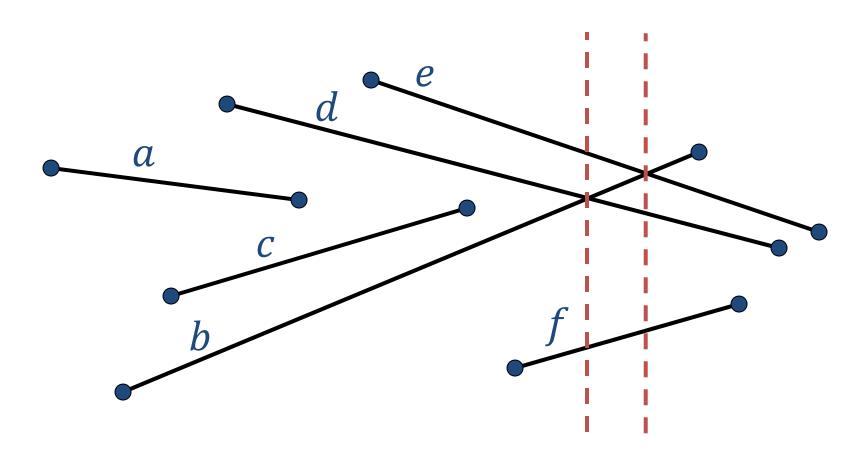
Endpoint Events

- For each line segment $\ell = (\ell \cdot \text{left}, \ell \cdot \text{right})$:
 - At ℓ . left. x: **insert** ℓ (binary search for neighbors then)
 - − At ℓ . right. *x*: **delete** ℓ



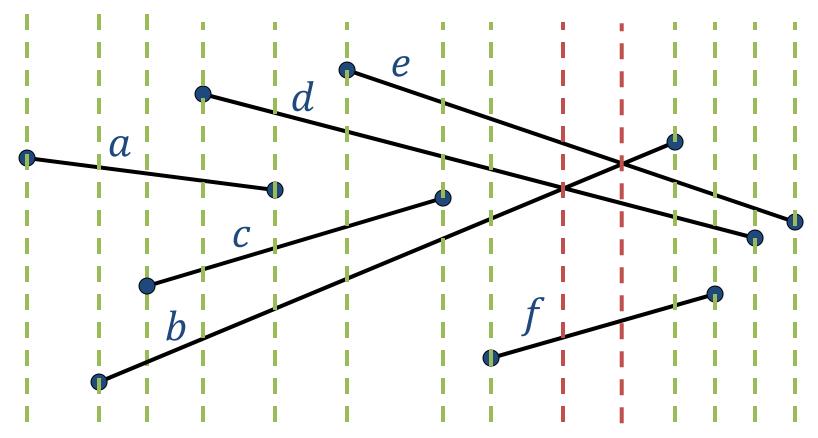
Intersection Events?

- How to know when have intersection events?
- This is the whole problem!



Intersection Events

- Compute when neighboring segments would intersect, if nothing changes meanwhile
- If such an event is next, then it really happens



Sweep-Line Algorithm

T = empty AVL tree

 $Q = \text{Build-Heap}(\{\ell. \text{left. } x, \ell. \text{ right. } x \text{ for segment } \ell\})$ while Q is not empty:

event = Q.delete-min()

if event is ℓ . left. x:

insert ℓ into T (binary searching with $x = \ell$. left. x) elif event is ℓ . right. x:

delete ℓ from T

elif event is $meet(\ell, \ell')$:

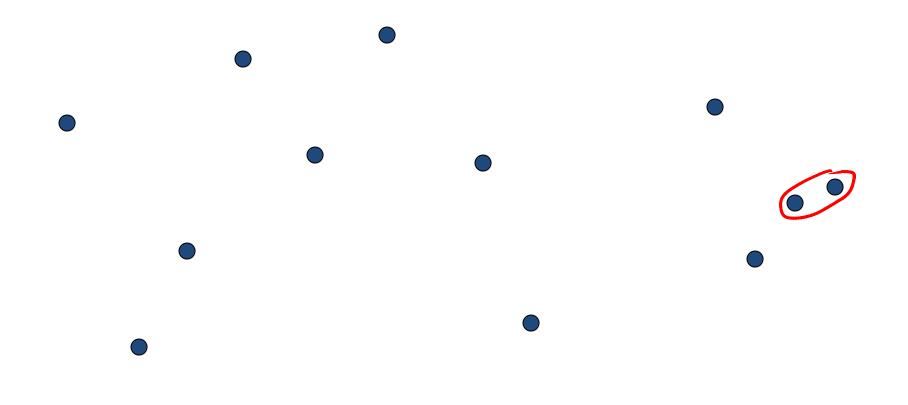
report intersection between ℓ and ℓ' swap contents of nodes for ℓ and ℓ' in Tfor each node ℓ changed or neighboring changed in T: delete all meet events involving ℓ from Qadd meet(ℓ, T . pred(ℓ)) & meet(ℓ, T . succ(ℓ)) to Q

Sweep-Line Analysis

- Running time = $O(\# \text{ events} \cdot \lg(\# \text{ events}))$
- Number of endpoint events = 2n
- Number of meet events =
 number k of intersections = size of output
- Running time = $O((n + k) \lg n)$
- Output sensitive algorithm: = O(lg)
 running time depends on size of output
- Best algorithm runs in $O(n \lg n + k)$ time

Closest Pair of Points

- <u>Input:</u> *n* points in 2D
- <u>Goal:</u> find two closest points



Obvious Algorithm

min(distance(p, q)
 for every pair (p, q) of points)

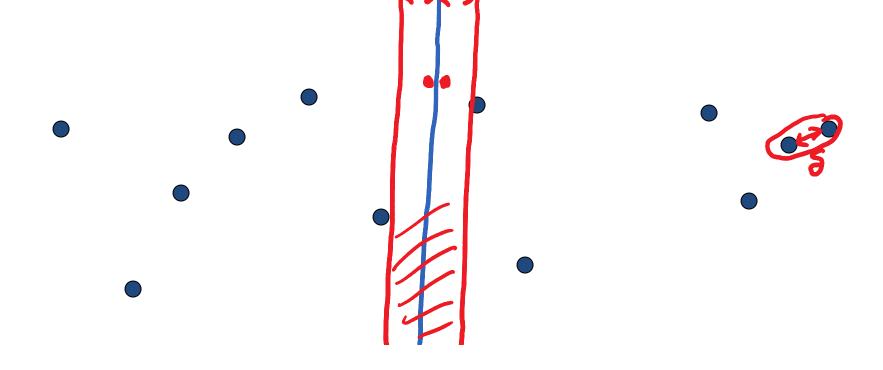
 $\frac{2}{3}O(n^2)$

Divide-and-Conquer Idea

- Initially sort points by *x* coordinate
- Split points into left half and right half
- Recurse on each half: find closest pair
- return min{closest pair in each half, closest pair between two halves}

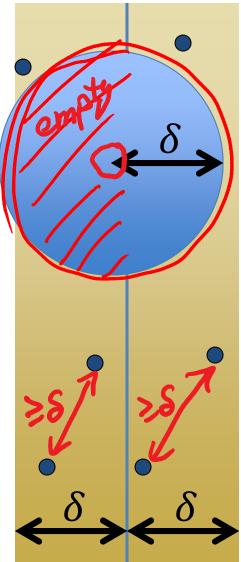
Closest Pair Between Two Halves?

- Let $\delta = \min\{\text{closest pair in each half}\}$
- Only interested in pairs with distance $< \delta$
- Restrict to window of width 2δ around middle



Closest Pair Between Two Halves

- For each left point, interested in points on right within distance δ
- Points on right side can't be within δ of each other
- So at most three right points to consider for each left point
 - Ditto for each right point
- Can compute in O(n) time
 by merging two sorted arrays



Divide-and-Conguer

O(1)

O(nlgn)

Oln

presort points by x def closest-pair(points): middle = (points[n/2 - 1] + points[n/2])/2 δ = min{closest-pair(points[: n/2]), closest-pair(points[n/2:])} sort points[points.succ(middle - δ):n/2] by y sort points[n/2: points.pred(middle + δ)] by y merge and find closest pair between two lists return min{ δ , closest distance from merge}

 $T(n) = 2T(\frac{1}{2}) + O(n \frac{1}{2}n)$ = $O(n \frac{1}{2} \frac$

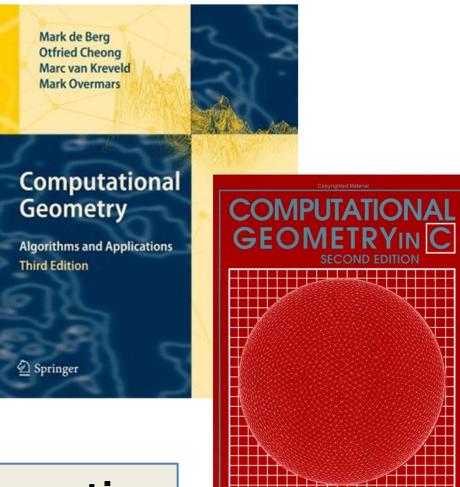
Faster Divide-and-Conquer [Shamos & Hoey 1975]

Point presort points by x and y, and cross link points def closest-pair(xpoints, ypoints): middle = (xpoints[n/2 - 1] + xpoints[n/2])/2 $\delta = \min\{\text{closest-pair}(\text{xpoints}[:n/2], \rightarrow \text{ypoints})\}$ closest-pair(xpoints[n/2:], \rightarrow ypoints) xpoints[xpoints.succ(middle $-\delta$): n/2] xpoints[n/2: xpoints.pred(middle + δ)] map to ypoints & find closest pair between lists $\frac{2}{\sqrt{3}}$ return min{ δ , closest distance from merge}

 $T(n) = 2T(\frac{n}{2}) + O(n)$ = O(n lg n)

Other Computational Geometry Problems

- Convex hull
- Voronoi diagram
- Triangulation
- Point location
- Range searching
- Motion planning



Joseph O'Rourke

6.850: Geometric Computing