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Experts and Experts and 

Multiplicative WeightsMultiplicative Weights

slides from Avrim Blum

Using “expert” adviceUsing “expert” advice

• We solicit n “experts” for their advice. (Will the market 

go up or down?)

• We then want to use their advice somehow to make our 

prediction.  E.g.,

Say we want to predict the stock market.

Basic question: Is there a strategy that allows us to do nearly as well 

as best of these in hindsight?

[“expert” = someone with an opinion.  Not necessarily someone who 

knows anything.]

Simpler questionSimpler question

• We have n “experts”.

• One of these is perfect (never makes a mistake).  We 

just don’t know which one.

• Can we find a strategy that makes no more than lg(n)

mistakes?

Answer: sure.  Just take majority vote over all experts that 

have been correct so far.

�Each mistake cuts # available by factor of 2.

�Note: this means ok for n to be very large.

What if no expert is perfect?What if no expert is perfect?

Intuition: 

Making a mistake doesn't completely disqualify an expert. 

So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best expert Analysis: do nearly as well as best expert 

in hindsightin hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

So, if m is small, then M is pretty small too.

Randomized Weighted MajorityRandomized Weighted Majority

M = expected 

#mistakes

Instead of taking majority vote, use weights as probabilities. 

(e.g., if 70% on up, 30% on down, then pick 70:30)

Idea: smooth out the worst case.

Also, generalize 1/2 to 1- ǫ. 

Solves to

M ≤ (–m ln (1 – ǫ) + ln n) ≈ (1 + ǫ/2)m + ln n

M ≤  1.39 m + 2 ln n       (when ǫ = 1/2)

M ≤  1.15 m + 4 ln n       (when ǫ = 1/4)

M ≤  1.07 m + 8 ln n       (when ǫ = 1/8)

ǫ ǫ
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AnalysisAnalysis

Say at time t we have fraction Ft of weight on experts 

that made mistake

So we have probability Ft of making a mistake, and we 

remove ǫ Ft fraction of total weight

Wfinal = n(1 – ǫ F1) (1 – ǫ F2) ...

ln Wfinal = ln n + ∑t (1 – ǫ Ft) ≤ ln n – ǫ ∑t Ft

(using ln (1 – x) ≤  –x )

But ∑t Ft = expected number of mistakes = ǫM.

If best expert makes m mistakes then ln(Wfinal) ≥ ln (1 – ǫ)m

= m ln (1 – ǫ)

Now solve ln n - ǫM ≥ m ln (1- ǫ).

M ≤ (–m ln (1 – ǫ) + ln n) ≈ (1 + ǫ/2)m + ln n
ǫ ǫ

An applicationAn application

Can use this for repeated play of matrix game

Consider cost matrix where all entries are 0 or 1

Rows are different experts. Start each with weight 1.

Notice that RWM is equivalent to "pick expert i with 

probability (wi / ∑j wj) and go with it“

Can apply with experts are actions rather than predictions 

Ft = fraction of weight on rows that had "1" in adversary's 

column. 

Analysis shows that we can do nearly as well as best expert 

in hindsight.

In fact, algorithm/analysis extends to costs in [0,1] 

not just in {0,1}

We assign weights wi, inducing probabilities pi = (wi / ∑j wj)

We choose a random row according to this distribution p.

Adversary chooses column. This gives column vector c. 

We pay expected cost p.c = ∑i pi ci.

Update: wi = wi (1 - ǫ ci) 

An applicationAn application RWM: matrix view
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World – life – fate - opponent

(1 + ǫ/2)OPT + ln n
ǫ

E[cost] ≤

Since OPT over T steps is at most T

≤ OPT + ǫT/2 + ln n
ǫ

A proof of the Minimax Theorem

VC

VR

RWM gives a clean simple proof of the minimax theorem.

Suppose for contradiction minimax theorem was false.

This means some game G has VC > VR:

If Column player commits first, 

there exists a row that gets the Row player at least VC.

But if Row player has to commit first, 

the Column player can make him get only VR.

Scale matrix so payoffs to row are in [-1,0].  

Observe: payoffs of –P to row = cost of P to row

⇒ can view as costs and hence use RWM

Also, say VR = VC - δ.

Now consider RWM algorithm against column who plays optimally 

against row's distribution (at each time).

In T steps, 

1) Alg gets ≥ [best row in hindsight] - ǫT/2 - (log n)/ǫ

[by guarantee of the RWM algorithm]

2) best row in hindsight ≥ T*VC

[if row player plays optimally against empirical distr. of column player]

3) But Alg ≤ T*VR

[since each time opponent knows your distribution]

By (2)-(3), gap between alg and best row is ≥ δ*T. 

Contradicts (1) for ǫ = δ/2 once we have T ≥ (ln n)/ǫ ².

VC

VR

A proof of the Minimax Theorem (contd)


