Experts and Multiplicative Weights

slides from Avrim Blum

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	ир	up	down	down

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- We have n "experts".
- One of these is perfect (never makes a mistake). We just don't know which one.
- Can we find a strategy that makes no more than lg(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

Each mistake cuts # available by factor of 2.

➤ Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition:

Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

```
        weights
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        2
        Y
        Y
        N
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y
        Y</
```

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)m. So,

$$(1/2)^m \le n(3/4)^M$$

 $(4/3)^M \le n2^m$
 $M \le 2.4(m + \lg n)$

So, if m is small, then M is pretty small too.

Randomized Weighted Majority

Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.

Also, generalize 1/2 to 1- ϵ .

Solves to

Analysis

Say at time t we have fraction \mathbf{F}_{t} of weight on experts that made mistake

So we have probability F_t of making a mistake, and we remove ϵ F_t fraction of total weight

$$\begin{aligned} & W_{\text{final}} = n(1 - \epsilon \; F_1) \; (1 - \epsilon \; F_2) \; \dots \\ & \ln W_{\text{final}} = \ln n \; + \sum_t \left(1 - \epsilon \; F_t\right) \leq \ln n \; - \; \epsilon \; \sum_t F_t \\ & \text{(using ln } (1 - x) \leq -x) \end{aligned}$$

But $\sum_t \mathsf{F_t}$ = expected number of mistakes = ϵ M.

If best expert makes m mistakes then $\ln(W_{\text{final}}) \ge \ln (1 - \epsilon)^m$ = m $\ln (1 - \epsilon)$

Now solve $\ln n - \epsilon M \ge m \ln (1 - \epsilon)$.

$$\mathsf{M} \leq \underbrace{(-\mathsf{m} \; \mathsf{ln} \; (1-\epsilon) + \mathsf{ln} \; \mathsf{n})}_{\epsilon} \approx (1+\epsilon/2)\mathsf{m} + \underbrace{\mathsf{ln} \; \mathsf{n}}_{\epsilon}$$

An application

Can use this for repeated play of matrix game

Consider cost matrix where all entries are 0 or 1 Rows are different experts. Start each with weight 1. Notice that RWM is equivalent to "pick expert i with probability (w_i / $\sum_j w_j$) and go with it"

Can apply with experts are actions rather than predictions F_t = fraction of weight on rows that had "1" in adversary's column.

Analysis shows that we can do nearly as well as best expert in hindsight.

An application

In fact, algorithm/analysis extends to costs in [0,1] not just in $\{0,1\}$

We assign weights $w_{i\prime}$ inducing probabilities p_i = $(w_i/\sum_j w_j)$ We choose a random row according to this distribution p. Adversary chooses column. This gives column vector c.

We pay expected cost p.c = $\sum_i p_i c_i$. Update: $w_i = w_i (1 - \epsilon c_i)$

A proof of the Minimax Theorem

RWM gives a clean simple proof of the minimax theorem.

Suppose for contradiction minimax theorem was false.

This means some game G has $V_C > V_R$:

If Column player commits first,

there exists a row that gets the Row player at least V_C

But if Row player has to commit first,

the Column player can make him get only V_R

Scale matrix so payoffs to row are in [-1,0].

Observe: payoffs of −P to row = cost of P to row ⇒ can view as costs and hence use RWM

Also, say $V_R = V_C - \delta$.

A proof of the Minimax Theorem (contd)

Now consider RWM algorithm against column who plays optimally against row's distribution (at each time).

In T steps,

1) Alg gets \geq [best row in hindsight] - $\epsilon \text{T/2}$ - (log n)/ ϵ

[by guarantee of the RWM algorithm]

2) best row in hindsight $\geq T^*V_C$

[if row player plays optimally against empirical distr. of column player]

3) But Alg $\leq T^*V_R$

[since each time opponent knows your distribution]

By (2)-(3), gap between alg and best row is $\geq \delta^*T$. Contradicts (1) for $\epsilon = \delta/2$ once we have $T \geq (\ln n)/\epsilon^2$.