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Below you will find Avrim’s notes from last year.  After his notes
I’ve included some notes of my own about applications, doing the
integer FFT without the use of complex numbers, along with an ocaml
implementation.

--DS

-------------------------Avrim’s Notes (start)-----------------------------

Avrim Blum                   15-451/651 Algorithms                 11/19/13

* Multiplying polynomials
* Fast Fourier Transform (FFT)

===========================================================================

FFT: The Fast Fourier Transform is a widely used algorithm in areas
like signal processing, speech understanding, digital audio, radar.

We’ll develop it in trying to solve the problem of "how to multiply
quickly" we talked about on the first day of class.  This is not how
it was invented historically (and it obscures the connection to the
usual kind of Fourier Transform), but I think it’s most natural from the
perspective of Algorithms.  You don’t need to know what a FT is for
this lecture.

At the start of class we talked about the problem of multiplying big
integers.  Let’s look at a simpler version of the problem, 
which is the problem of multiplying polynomials.  It sounds more
complicated, but really it’s just the problem of multiplying integers
without the carries. 

MULTIPLYING POLYNOMIALS (aka COMPUTING CONVOLUTIONS)
====================================================
E.g., multiply (x^2 + 2x + 3)(2x^2 + 5) = 

                        2x^2 + 0x + 5
                        1x^2 + 2x + 3
                        -------------
                        6      0   15
                 4      0      10
          2      0      5
         ----------------------------
          2x^4 + 4x^3 + 11x^2 +10x+15

MODEL: view each individual small multiplication as a unit cost operation.

More generally, given A(x) = a_0 + a_1 x + ... + a_{n-1}x^{n-1},
                      B(x) = b_0 + b_1 x + ... + b_{n-1}x^{n-1}

Our goal is to compute the polynomial C(x) = A(x)*B(x).  
    c_i = a_0*b_i + a_1*b_{i-1} + ... + a_i*b_0.

If we think of A and B as vectors, then the C-vector is called the
CONVOLUTION of A and B.  

The FFT is a fast algorithm for computing this convolution.  Given
vectors A = [a_0,...,a_{n-1}] and B = [b_0,...,b_{n-1}] we want to
compute C = [c_0,...,c_{2n-2}] where c_i is defined as above.

- Straightforward computation is O(n^2) time.  Karatsuba is n^{1.58..}

- we’ll use FFTs to do in O(n log n) time.  This is then used in
Schonhage-Strassen integer multiplication algorithm that multiplies



two n-bit integers in O(n log n loglog n) time. We’re only going to do
polynomial multiplication.

High Level Idea of Algorithm
============================
Let m = 2n-1. [so degree of C is less than m]
1. Pick m points x_0, x_1, ..., x_{m-1} according to a secret formula.
2. Evaluate A at each of the points: A(x_0),..., A(x_{m-1}).
3. Same for B.
4. Now compute C(x_0),..., C(x_{m-1}), where C(x) is A(x)*B(x)
5. Interpolate to get the coefficients of C.

This approach is based on the fact that a polynomial of degree < m is
uniquely specified by its value on m points.  It seems patently crazy
since it looks like steps 2 and 3 should take O(n^2) time just in
themselves.  However, the FFT will allow us to quickly move from
"coefficient representation" of polynomial to the "value on m points"
representation, and back, for our special set of m points.  (Doesn’t
work for *arbitrary* m points.)

The reason we like this is that multiplying is easy in the "value on m
points" representation.  We just do: C(x_i) = A(x_i)*B(x_i).  So, only
O(m) time for step 4.

Let’s focus on forward direction first.  In that case, we’ve reduced
our problem to the following:

GOAL: Given a polynomial A of degree < m, evaluate A at m points of our
      choosing in total time O(m log m).  Assume m is a power of 2.

The FFT:
=======

Let’s first develop it through an example.  Say m=8 so we have a polynomial 

 A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6x^6 + a_7x^7.
 (as a vector, A = [a_0, a_1, ..., a_7])

And we want to evaluate at eight points of our choosing.  Here is an
idea.  Split A into two pieces, but instead of left and right, have
them be even and odd.  So, as vectors, 
  A_even = [a_0, a_2, a_4, a_6]
  A_odd = [a_1, a_3, a_5, a_7]
  
or, as polynomials:

         A_even(y) = a_0 + a_2 y + a_4 y^2 + a_6 y^3
         A_odd(y) = a_1 + a_3 y + a_5 y^2 + a_7 y^3.

Each has degree < m/2.  How can we write A(x) in terms of A_even and A_odd?

          A(x) = A_even(x^2) + x A_odd(x^2).

What’s nice is that the effort spent computing A(x) will give us A(-x)
almost for free.   So, let’s say our special set of m points will have
the property:

        The 2nd half of points are the negative of the 1st half   (*)

E.g., {1,2,3,4,-1,-2,-3,-4}. 

Now, things look good: Let T(m) = time to evaluate a degree-m
polynomial at our special set of m points.  We’re doing this by
evaluating two degree-m/2 polynomials at m/2 points each (the
squares), and then doing O(m) work to combine the results. This is
great because the recurrence T(m) = 2T(m/2) + O(m) solves to O(m log m).



But, we’re deluding ourselves by saying "just do it recursively".
Why is that?  The problem is that recursively, our special points (now
{1, 4, 9, 16}) have to satisfy property (*).  E.g., they should really
look like {1, 4, -1, -4}.  BUT THESE ARE SQUARES!! How to fix?  Just
use complex numbers!  E.g., if these are the squares, what do the
original points look like? 

        {1, 2, i, 2i, -1, -2, -i, -2i}

so then their squares are: 1, 4, -1, -4
and their squares are: 1, 16

But, at the next level we again need property (*).  So, we want to
have {1, -1} there.  This means we want the level before that to be
{1, i, -1, -i}, which is the same as {1, i, i^2, i^3}.  So, for the
original level, let w = sqrt(i) = 0.707 + 0.707i, and then 
our original set of points will be:

        1, w, w^2, w^3, w^4 (= -1), w^5 (= -w), w^6 (= -w^2), w^7 (= -w^3)

so that the squares are: 1, i, i^2 (= -1), i^3 (= -i)
and *their* squares are: 1, -1
and *their* squares are: 1

The "w" we are using is called a "primitive eighth root of unity"
(since w^8 = 1 and w^k != 1 for 0 < k < 8). 

In general, a mth primitive root of unity is the number
w = cos(2*pi/m) + i*sin(2*pi/m)

Alternatively, we can use modular arithmetic: E.g., 2 is a primitive
8th root of unity mod 17. 
{2^0,2^1,2^2,...,2^7} = {1,2,4,8 16,15,13, 9}
                      = {1,2,4,8,-1,-2,-4,-8}. 

Then when you square them, you get {1,4,-1,-4}, etc.
This is nice because we don’t need to deal with messy floating-points.

THE FFT ALGORITHM
=================
Here is the general algorithm in pseudo-C:

Let A be array of length m, w be primitive mth root of unity.
Goal: produce DFT F(A): evaluation of A at 1, w, w^2,...,w^{m-1}.
FFT(A, m, w)
{
  if (m==1) return vector (a_0)
  else {
    A_even = (a_0, a_2, ..., a_{m-2})
    A_odd  = (a_1, a_3, ..., a_{m-1})
    F_even = FFT(A_even, m/2, w^2)    //w^2 is a primitive m/2-th root of unity
    F_odd = FFT(A_odd, m/2, w^2)
    F = new vector of length m
    x = 1
    for (j=0; j < m/2; ++j) {
      F[j] = F_even[j] + x*F_odd[j]
      F[j+m/2] = F_even[j] - x*F_odd[j]
      x = x * w
  }
  return F
}

THE INVERSE OF THE FFT
======================
Remember, we started all this by saying that we were going to multiply
two polynomials A and B by evaluating each at a special set of m
points (which we can now do in time O(m log m)), then multiply the



values point-wise to get C evalauated at all these points (in O(m)
time) but then we need to interpolate back to get the coefficients.
In other words, we’re doing F^{-1}(F(A) o F(B)).

So, we need to compute F^{-1}.  Here’s how.

First, we can look at the forward computation (computing A(x) at 1, w,
w^2, ..., w^{m-1}) as an implicit matrix-vector product:

       +---------------------------------------+  +-----+    +-------+
       |  1   1    1     1   ...    1          |  | a_0 |    | A(1)  |
       |  1   w    w^2   w^3 ... w^{m-1}       |  | a_1 |    | A(w)  |
       |  1   w^2  w^4   w^6 ... w^{2(m-1)}    |  | a_2 | == | A(w^2)|
       |  1   w^3  w^6   w^9 ... w^{3(m-1)}    |  | a_3 |    | A(w^3)|
       |          .....        .....           |  | ... |    | ...   |
       |  1 w^{-1} w^{-2} w^{-3} ... w         |  |a_m-1|    | ...   |
       +---------------------------------------+  +-----+    +-------+

(Note w^{m-1} = w^{-1} since w^m = 1)

(We’re doing this "implicitly" in the sense that we don’t even have
time to write down the matrix.)

To do the inverse transform, what we want is to multiply by the
inverse of the F matrix.  As it turns out, this inverse looks very
much like F itself.  In particular, notice that w^{-1} is also a
principal mth root of unity. Let’s define \bar{F} to be the fourier
transform matrix using w^{-1} instead of w.  Then,

Claim:  F^{-1} = (1/m) * \bar{F}.  I.e., 1/m * \bar{F} * F = identity.

Proof:  What is the i,j entry of \bar{F} * F?  It is:

        1 + w^{j-i} + w^{2j-2i} + w^{3j-3i} + ... + w^{(m-1)j - (m-1)i}

   If i=j, then these are all = 1, so the sum is m.  Then when we
   divide by m we get 1.

   If i!=j, then the claim is these all cancel out and we get zero.
   Maybe easier to see if we let z = w^{j-i}, so then the sum is:

        1 + z + z^2 + z^3 + z^4 + ... + z^{m-1}.

   Then can see these cancel by picture.  For instance, try z = w, z = w^2.

   Or can use the formula for summations: (1 - z^m)/(1-z) = 0/(1-z) = 0.

So, the final algorithm is:

    Let F_A = FFT(A, m, w)                        // time O(n log n)
    Let F_B = FFT(B, m, w)                        // time O(n log n)
    For i=1 to m, let F_C[i] = F_A[i]*F_B[i]      // time O(n)
    Output C = 1/m * FFT(F_C, m, w^{-1}).         // time O(n log n)

NOTE: If you’re an EE or Physics person, what we’re calling the "Fourier
Transform" is what you would usually call the "inverse Fourier
transform" and vice-versa.

-------------------------Avrim’s Notes (end)-------------------------------

If the polynomials have integer coefficients, then the convolution is
also integer valued.  Avrim mentions that it would be nice if our
algorithm for doing the convolution did not depend on using a floating
point representation of complex numbers.  Here are some more details
on how to do this.



Let B be a bound on the biggest number we’re interested in.  (For
example, if we’re doing a convolution of two vectors of length n whose
values are bounded by b then we need B>b^2n.)  Our exposition assumes
that the vectors we’re convolving are comprised of non-negative
integers.  This assumption is easily eliminated, but we stick to it
here for clarity.

We will run the algorithm in the field of integers modulo p (for some
prime p to be suitably chosen).  The multiplicative group of this
field is denoted Z_p^*.  We must choose p >= B so that arithmetic
(adding and multiplying) on any pair of numbers that results in a
number less than B (over the field of all integers) will give the same
result when we operate in the field of integers modulo p.

Let F_p be the field of integers modulo p.  Here are the properties
we need:

    (1)  p >= B
    (2)  F_p contains a principle nth root of unity (n is a power of 2)

Consider a prime of the form p = k*n + 1, for some integer k.
By Fermat’s theorem we know that for any 0 < g < p:

      g^(p-1) = 1 (mod p)

  ==> g^(k*n) = 1 (mod p)

  ==> (g^k)^n = 1 (mod p)

Therefore g^k = r is a candidate for a principle nth root of unity.
We just need to check that r^1, r^2, ... , r^n = 1  are all distinct.

So here’s a practical way to find the necessary numbers.  Start trying
all k’s (sufficiently large), trying to find a value such that k*n+1
is a prime.  Primes are dense, so it’s very easy to find such values.

Now pick g at random and test r = g^k is a principle nth root of
unity.  Keep trying until one works.  In practice this is very fast.
Below is ocaml code to do this.

-------------------ocaml code to generate the field-------------------------

(* We’re given n, which is 2^q.  We want a field to compute
   convolutions in.  The field needs to be isomorphic to the integers
   (if they’re small enough).  Say we know B, an upper bound on the biggest
   number that could occur in the convolution.

   Let Z_p^* be the multiplicative group modulo p.  It’s known to be
   cyclic.  Let g be a generator.  If it is the case that p = kn+1,
   then we know that g^(p-1) = 1.  Therefore g^(kn) = 1.  Therefore
   (g^k)^n = 1.  Also since g is a generator we know that all of these
   n powers of g^k are distinct.  Therefore g^k is a principal nth
   root of unity.

   Let’s check here if it’s easy to generate such numbers.
*)

let isprime n = 
  let rec loop i = (i*i > n) || (n mod i <> 0 && loop (i+1)) in
  n >= 2 && loop 2

let rec powermod a p n = 
  let sq x = x*x mod n in
  if p=0 then 1 else 
    let x = sq (powermod a (p/2) n) in
    if p land 1 = 0 then x else (a*x) mod n



let find_good_prime q b =
  (* find a prime p such that p > b and p=(2^q)*k+1 for some k *)
  let n = 1 lsl q in

  let min_k = (b+n-1)/n in  (* ceiling b/n *)

  let max_k = (max_int - 1)/n in
  
  let rec loop k = if k>=max_k then -1 else
      if isprime (n*k+1) then k else loop (k+1)
  in

  let k = loop min_k in
  (k, n*k+1)

let () = Random.self_init ()

let find_principle_root_of_unity q p =
  let n = 1 lsl q in
  let k = (p-1)/n in

  let rec loop () = 
    Printf.printf "*\n";
    let g = 2 + Random.int (min (1 lsl 29) (p-2)) in (* between 2 and p-1 *)
    let r = powermod g k p in
    let h = Hashtbl.create 10 in
    for i=1 to q do
      Hashtbl.replace h (powermod r (1 lsl i) p) true;
    done;
    if Hashtbl.length h = q then r else loop ()
  in

  loop ()

let inverse a p =  (* compute the inverse of a modulo p *)
  let rec egcd a b =
    (* given a and b this returns (x, y, g) where g = gcd(a,b) and ax+by=g  *)
    if a = 0 then (0,1,b) else   
      let (x,y,g) = egcd (b mod a) a in  
      (y-(b/a)*x, x, g)
  in
  let (x,_,_) = egcd a p in
  if x >= 0 then x else x+p

let q = 8
let n = 1 lsl q
let b = 1_000_000
let (k,p) = find_good_prime q b
let w = find_principle_root_of_unity q p
let n’ = inverse n p
let w’ = inverse w p
    
let () = Printf.printf "q=%d  b=%d ----> n=%d  n’=%d  k=%d  p=%d  w=%d  w’=%d\n"
  q b n n’ k p w w’

-------------------end ocaml code to generate the field---------------------

Below is an implementation of the FFT algorithm in ocaml.

-----------------------ocaml FFT implementation-----------------------------

let q=3
let n=8
let n’=99
let b=100
let k=14



let p=113
let w=95
let w’=69

(* Arithmetic modulo p. Assuming an input number is in [0,p-1] the
   output is also in [0,p-1]. *)
let ( ++ ) a b = (a+b) mod p
let ( ** ) a b = (a*b) mod p
let ( -- ) a b = if a>=b then a-b else a-b+p

let rec fft a n w =
  (* array a of length n with w a principle nth root of unity mod p *)
  (* return the fft of this vector *)
  
  if n = 1 then a else
    let n’ = n/2 in
    let w’ = w ** w in
    let aeven = Array.init n’ (fun i -> a.(2*i)) in
    let aodd  = Array.init n’ (fun i -> a.(2*i+1)) in
    let veven = fft aeven n’ w’ in
    let vodd  = fft aodd  n’ w’ in
    let v = Array.make n 0 in

    let rec loop j wj = if j < n’ then (
      v.(j) <- veven.(j) ++ wj ** vodd.(j);
      v.(j+n’) <- veven.(j) -- wj ** vodd.(j);
      loop (j+1) (w**wj)
    ) in
    loop 0 1;
    v

let fft_inverse a n w’ =
  let v = fft a n w’ in
  Array.init n (fun i -> v.(i) ** n’)

open Printf

let print_vector a name =
  let n = Array.length a in
  printf "%15s =" name;
  for i=0 to n-1 do
    Printf.printf " %4d" a.(i)
  done;
  print_newline()

let () = 
  let a = Array.init n (fun i -> i) in
  let v = fft a n w in
  let a’ = fft_inverse v n w’ in

  print_vector a "a";
  print_vector v "fft a";
  print_vector a’ "fft inverse";

  let c = [|1;1;0;0;0;0;1;1|] in
  let d = [|1;1;0;0;0;0;1;1|] in

  let c’ = fft c n w in
  let d’ = fft d n w in
  let prod = Array.init n (fun i -> c’.(i) ** d’.(i)) in
  let conv = fft_inverse prod n w’ in

  print_newline();
  print_vector c "c";
  print_vector d "d";
  print_vector conv "conv c d";



-----------------------END ocaml FFT implementation-------------------------

Applications of the FFT.
------------------------

   The algorithm works in higher dimensinons (2D is important)
   Signal Processing
   Image Compression
   Force computations
   Computerized Axial Tomography (CAT scans)
   Simulating Linear Cellular Automata


