
Lecture 2

Concrete models and tight
upper/lower bounds

2.1 Overview

In this lecture, we will examine some simple, concrete models of computation, each with a precise
definition of what counts as a step, and try to get tight upper and lower bounds for a number of
problems. Unlike many of the other lectures, in this one we will not be using O, Θ, and Ω, and
we will instead try to examine exact quantities as much as possible. Specific models and problems
examined in this lecture include:

• The number of exchanges needed to sort an array.

• The number of comparisons needed to find the largest and second-largest elements in an
array, and a more precise look at the number of comparisons needed to sort.

• The number of probes into a graph needed to determine if the graph is connected (the
evasiveness of connectivity).

2.2 Terminology and setup

In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems
in several different concrete models. Each model will specify exactly what operations may be
performed on the input, and how much they cost. Typically, each model will have some operations
that cost 1 step (like performing a comparison, or swapping a pair of elements), some that are free,
and some that are not allowed at all.

By an upper bound of f(n) for some problem, we mean that there exists an algorithm that takes at
most f(n) steps on any input of size n. By a lower bound of g(n), we mean that for any algorithm
there exists an input on which it takes at least g(n) steps. The reason for this terminology is that
if we think of our goal as being to understand the “true complexity” of each problem, measured in
terms of the best possible worst-case guarantee achievable by any algorithm, then an upper bound
of f(n) and lower bound of g(n) means that the true complexity is somewhere between g(n) and
f(n).
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2.3 Sorting in the exchange model

Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we can
swap any pair of books we like. How many swaps do we need to sort all the books? Formally, we
are considering the problem of sorting in the exchange model.

Definition 2.1 In the exchange model, an input consists of an array of n items, and the only
operation allowed on the items is to swap a pair of them at a cost of 1 step. All other (planning)
work is free: in particular, the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in the
exchange model to sort an array of n items in the worst case?

Claim 2.1 (Upper bound) n − 1 exchanges is sufficient.

Proof: To prove an upper bound of n−1 we just need to give an algorithm. For instance, consider
the algorithm that in step 1 puts the smallest item in location 1, swapping it with whatever was
originally there. Then in step 2 it swaps the second-smallest item with whatever is currently in
location 2, and so on (if in step k, the kth-smallest item is already in the correct position then we
just do a no-op). No step ever undoes any of the previous work, so after n− 1 steps, the first n− 1
items are in the correct position. This means the nth item must be in the correct position too.

But are n − 1 exchanges necessary in the worst-case? If n is even, and no book is in its correct
location, then n/2 exchanges are clearly necessary to “touch” all books. But can we show a better
lower bound than that?

Claim 2.2 (Lower bound) In fact, n − 1 exchanges are necessary, in the worst case.

Proof: Here is how we can see it. Create a graph in which a directed edge (i, j) means that that
the book in location i must end up at location j. For instance, consider the example in Figure
2.1. Note that this is a special kind of directed graph: it is a permutation — a set of cycles. In
particular, every book points to some location, perhaps its own location, and every location is
pointed to by exactly one book. Now consider the following points:

1. What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i1, j1) and (i2, j2) and we swap the elements in locations
i1 and i2. Then this causes those two edges to be replaced by edges (i2, j1) and (i1, j2) because
now it is the element in location i2 that needs to go to j1 and the element in i1 that needs
to go to j2. This means that if i1 and i2 were in the same cycle, that cycle now becomes two
disjoint cycles.

2. What is the effect of exchanging any two elements that are in different cycles?

Answer: If we swap elements i1 and i2 that are in different cycles, then the same argument
as above shows that this merges those two cycles into one cycle.
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Figure 2.1: Graph for input [f c d e b a g]

3. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle,
such as [n, 1, 2, 3, 4, . . . , n − 1]. Each operation at best increases the number of cycles by 1 and in
the end we need to have n cycles. So, this input requires n − 1 operations.

2.4 The comparison model

Let’s now look at the more common comparison model.

Definition 2.2 In the comparison model, we have an input containing n items, but the only infor-
mation the algorithm can get about the items is by comparing pairs of them, where each comparison
returns YES or NO. Each comparison costs 1 step. But exchanges and moves are free.

In other classes you probably have looked at sorting in the comparison model, and gave a lower
bound of lg(n!) on the number of comparisons needed.1 Let us begin with a simple generalization.
Suppose you have some problem where there are M possible different outputs the algorithm might
produce; e.g., for sorting by comparisons where the output can be viewed as a specific permutation
of the input, M = n!. Suppose furthermore that for each of these outputs, there exists some input
under which it is the only correct answer. Then, we have a worst-case lower bound of lg M . The
reason is that the algorithm needs to find out which of these M outputs is the right one, and
each YES/NO question could be answered in a way that removes at most half of the possibilities
remaining from consideration. So, in the worst case, it takes at least lg M steps to find the right
answer.

1We will use “lg” to mean “log
2
”.
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Just to get a better handle on what exactly lg(n!) looks like, since today’s theme is tight bounds,
we can use the fact that n! ∈ [(n/e)n, nn]. So this means that:

n lg n − n lg e < lg(n!) < n lg n
n lg n − 1.443n < lg(n!) < n lg n.

Since 1.433n is a low-order term, sometimes people will write this fact this as: lg(n!) = (n lg n)(1−
o(1)), meaning that the ratio between lg(n!) and n lg n goes to 1 as n goes to infinity.

2.4.1 Almost-tight upper-bounds for comparison-based sorting

Assume n is a power of 2 — in fact, let’s assume this for the entire rest of today’s lecture. Can you
think of an algorithm that makes at most n lg n comparisons, and so is tight in the leading term?
In fact, there are several algorithms, including:

Binary insertion sort If we perform insertion-sort, using binary search to insert each new el-
ement, then the number of comparisons made is at most

∑
n

k=2
⌈lg k⌉ ≤ n lg n. Note that

insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

Mergesort Merging two lists of n/2 elements each requires at most n − 1 comparisons. So,
unrolling the recurrence we get (n − 1) + 2(n/2 − 1) + 4(n/4 − 1) + . . . + n/2(2 − 1) =
n lg n − (n − 1) < n lg n.

2.4.2 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in the
comparison model of computation?

Claim 2.3 (Upper bound) n−1 comparisons are sufficient to find the maximum of n elements.

Proof: Just scan left to right, keeping track of the largest element so far. This makes at most
n − 1 comparisons.

Now, let’s try for a lower bound. One simple lower bound is that since there are n possible answers
for the location of the minimum element, our previous argument gives a lower bound of lg n. But
clearly this is not at all tight. In fact, we can give a better lower bound of n − 1.

Claim 2.4 (Lower bound) n− 1 comparisons are needed in the worst-case to find the maximum
of n elements.

Proof: Suppose some algorithm A claims to find the maximum of n elements using less than n−1
comparisons. Consider an arbitrary input of n distinct elements, and construct a graph in which
we join two elements by an edge if they are compared by A. If fewer than n − 1 comparisons are
made, then this graph must have at least two components. Suppose now that algorithm A outputs
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some element u as the maximum, where u is in some component C1. In that case, pick a different
component C2 and add a large positive number (e.g., the value of u) to every element in C2. This
process does not change the result of any comparison made by A, so on this new set of elements,
algorithm A would still output u. Yet this now ensures that u is not the maximum, so A must be
incorrect.

Since the upper and lower bounds are equal, these bounds are tight.

2.4.3 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the second
largest of n elements? Again, let us assume that all elements are distinct.

Claim 2.5 (Lower bound) n − 1 comparisons are needed in the worst-case to find the second-
largest of n elements.

Proof: The same argument used in the lower bound for finding the maximum still holds.

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim 2.6 (Upper bound #1) 2n− 3 comparisons are sufficient to find the second-largest of n
elements.

Proof: Just find the largest using n− 1 comparisons, and then the largest of the remainder using
n − 2 comparisons, for a total of 2n − 3 comparisons.

We now have a gap: n−1 versus 2n−3. It is not a huge gap: both are Θ(n), but remember today’s
theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can reduce
the upper bound quite a bit:

Claim 2.7 (Upper bound #2) n + lg n− 2 comparisons are sufficient to find the second-largest
of n elements.

Proof: As a first step, let’s find the maximum element using n − 1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum in
each pair, and recurse on the maxima. E.g.,

6     4     2    1    8     7    3    5 

6 8 52

6 8

First round

Second round

Third round

8
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Now, given just what we know from comparisons so far, what can we say about possible locations
for the second-highest number (i.e., the second-best player)? The answer is that the second-best
must have been directly compared to the best, and lost.2 This means there are only lg n possibilities
for the second-highest number, and we can find the maximum of them making only lg(n)− 1 more
comparisons.

At this point, we have a lower bound of n − 1 and an upper bound of n + lg(n) − 2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the upper
bound.3

2.5 Query models, and the evasiveness of connectivity

To finish with something totally different, let’s look at the query complexity of determining if a
graph is connected. Assume we are given the adjacency matrix G for some n-node graph. That
is, G[i, j] = 1 if there is an edge between i and j, and G[i, j] = 0 otherwise. We consider a model
in which we can query any element of the matrix G in 1 step. All other computation is free. That
is, imagine the graph matrix has values written on little slips of paper, face down. In one step we
can turn over any slip of paper. How many slips of paper do we need to turn over to tell if G is
connected?

Claim 2.8 (Easy upper bound) n(n−1)/2 queries are sufficient to determine if G is connected.

Proof: This just corresponds to querying every pair (i, j). Once we have done that, we know the
entire graph and can just compute for free to see if it is connected.

Interestingly, it turns out the simple upper-bound of querying every edge is a lower bound too.
Because of this, connectivity is called an “evasive” property of graphs.

Theorem 2.9 (Lower bound) n(n− 1)/2 queries are necessary to determine connectivity in the
worst case.

Proof: Here is the strategy for the adversary: when the algorithm asks us to flip over a slip of
paper, we return the answer 0 unless that would force the graph to be disconnected, in which case
we answer 1. (It is not important to the argument, but we can figure this out by imagining that all
un-turned slips of paper are 1 and seeing if that graph is connected.) Now, here is the key claim:

Claim: we maintain the invariant that for any un-asked pair (u, v), the graph revealed
so far has no path from u to v.

Proof of claim: If there was, consider the last edge (u′, v′) revealed on that path. We
could have answered 0 for that and kept the same connectivity in the graph by having
an edge (u, v). So, that contradicts the definition of our adversary strategy.

2Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!),
writing about the proper way to award prizes in lawn tennis tournaments.

3First shown by Kislitsyn (1964).
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Now, to finish the proof: Suppose an algorithm halts without examining every pair. Consider
some unasked pair (u, v). If the algorithm says “connected,” we reveal all-zeros for the remaining
unasked edges and then there is no path from u to v (by the key claim) so the algorithm is wrong.
If the algorithm says “disconnected,” we reveal all-ones for the remaining edges, and the algorithm
is wrong by definition of our adversary strategy. So, the algorithm must ask for all edges.

We’ll see more arguments like this when we talk about spanning trees later on in the course.


