
15-451 Algorithms, Spring 2009

Homework # 2 due: Tue-Thu, February 10-12, 2009

Ground rules:

• This is an oral presentation assignment. You should work in groups of three. Please
sign up for a 1-hour time slot for your group in recitation on Wednesday, Feb 3. From
Wednesday afternoon until Sunday, Feb 8 at 11:59pm, there will be a signup sheet posted
on the door of Doherty Hall, 4301a. You can use this to sign up, although the later you
do this, the less likely you are to get a good time slot.

• Each person in the group must be able to present every problem. The TA/Professor will
select who presents which problem. The other group members may assist the presenter.

• You are not required to hand anything in at your presentation, but you may if you choose.

1. Problem 1: median of two sorted arrays (Pranjal Awasthi)

Consider a new definition of the median: We will define the median of an array of 2k
elements as the ordered pair (ai, aj) such that ai is greater than k − 1 elements and less
than k elements and aj is greater than k elements and less than k − 1 elements. For
example in the array [2, 3, 4, 5, 6, 7, 9, 11], the median would be (5, 6). The median of an
array containing 2k − 1 elements is defined as the element which is greater than k − 1
elements and less than k − 1 elements.

Let A = [a1, . . . , an] and B = [b1, . . . , bn] be two sorted arrays of n elements each. Assume
that n is a power of 2 and that no two elements are the same. We can easily, i.e. without
making any comparisons, find the location of the median in A — it is just (A[n

2
], A[n

2
+1])

— and similarly we can, without making any comparisons, find the location of the median
in B. But, what if we want to find the location of the median overall — i.e., the location
of the nth smallest and the (n + 1)th smallest elements in the union of A and B. For
example if the two arrays are A = [2, 3, 4, 6] and B = [5, 7, 9, 11], then the location of the
overall median would be (B[1], A[4])(Assume that the arrays start from 1).

Specifically, assuming that every comparison costs one dollar, given A and B how cheaply
can we find the location of the pair of elements which form the median in the union of
the two arrays?

(a) Give an algorithm to solve the problem. Prove that your algorithm works and give
a function f(n) such that using your algorithm one will pay at most f(n) dollars.

(b) Give a function g(n) and prove that using any algorithm, one must pay at least g(n)
dollars in the worst case.

The points you get on this problem will depend on how close f(n) and g(n) are to each
other.

Some hints: You may wish to try small cases. For the lower bound, notice that the output
of the algorithm is the location of the desired median (e.g, “(A[17], B[24])”). How many
different possible outputs are there?

1



Extra Credit: Can you come up with a better algorithm if one is only interested in know-
ing the unordered median pair. For example, what if both (A[3], B[1]) and (B[1], A[3])
are valid answers?

2. Problem 2: tight upper/lower bounds (Maxim Makatchev)

Consider the following problem (let’s call it Matrix Sorting).

INPUT: n2 distinct numbers in some arbitrary order.

OUTPUT: an n×n matrix of the inputs having all rows and columns sorted in increasing
order.

EXAMPLE: n = 3, so n2 = 9. Say the 9 numbers are the digits 1, ..., 9. Possible outputs
include:

1 4 7 1 4 5 1 3 4

2 5 8 or 2 6 7 or 2 5 8 or ...

3 6 9 3 8 9 6 7 9

In this problem you are going to prove tight upper and lower bounds in comparison model
of computation. Namely, you will show that you can solve this problem using O(n2 log n)
comparisons and also that you need at least Ω(n2 log n) comparisons to solve it.

(a) Show how to solve Matrix Sorting in time O(n2 log n).

(b) Show that you can merge two sorted arrays of size n using at most 2n−1 comparisons.

(c) Show that if you could solve Matrix Sorting using less than n2 lg(n/e) comparisons,
then you could sort an array of m elements using fewer than lg(m!) comparisons.
You may want to use the fact that m! > (m/e)m. For simplicity, you can also assume
that n is a power of 2. As before, lg stands for log

2
.

(d) Explain why your result in part (c) implies that there is no solution to the Matrix
Sorting problem that uses less than c·n2 lg(n), for any constant c, such that 0 < c < 1.

(e) Explain why your result in part (d) implies that the lower bound on the number of
comparisons in the Matrix Sorting problem is Ω(n2 log n).

3. Problem 3: Amortized Analysis (Daniel Nuffer)

Imagine a computer, with a queue of n processors (CPUs). Each processor may have any
number of threads running on it.

Initially, out computer has n − 1 threads in total, with the first n − 1 processors in the
queue each have one thread. We never add more threads to our computer, so there are
always n − 1 in total. However, occasionally a processor must be reset, in which case it
goes to the end of the queue and its m threads are reassigned, one apiece, to each of the
m processors at the front of the queue. The cost of resetting a processor with m threads
is exactly m.

The following table gives an example of what could happen. In the initial state, the

2



first 4 processors in the queue have a thread. If the processor at the top of the queue
resets, it gets moved to the back, and its thread gets reassigned to the new first processor
in the queue, which now has 2 threads. In the final step, the first two processors in the
queue have 2 threads each. Then the second processor in the queue resets and moves to
the back of the queue. The result is that the new top processor in the queue now has 3
threads, whilst the other thread from the resetting processor gets reassigned to the third
processor, which is now in second place.

Queue Index 1 2 3 4 5

Initial State 1 1 1 1 0
After resetting index 1 2 1 1 0 0
After resetting index 1 2 2 0 0 0
After resetting index 2 3 1 0 0 0

(a) Find and prove an upper and lower on the worst case cost of a single reset. (Please
be exact - no big-O notation.)

(b) Find and prove an upper and lower bound on the worst case amortized cost per reset
in big-O notation.

3


