
15-451 Algorithms, Spring 2009

Homework # 3 Due Date: Tuesday, February 24th, 2009

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(25 pts) 1. Hashing. As discussed in class, the notion of universal hashing gives us guarantees
that hold for arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash
function. In this problem, you will work out what some of these guarantees are.

(a) Describe an explicit universal hash function family from U = {0, 1, 2, 3, 4, 5, 6, 7}
to {0, 1}. Hint: you can do this with a set of 4 functions.

(b) Find all subsets S ⊂ U of size 2, such that for S there is no perfect hash function
from your proposed universal hash function family H. Explain.

(c) Let’s generalize the result we obtained in (a) a little bit. Suppose that we are
looking for a smallest size universal hash family from U = {0, 1, . . . , 2n − 1} to
{0, 1}. Find a lower bound on the size of such a hash family. Provide a proof or
an explanation.

Hint: You may use the following fact:
∑q

p=0

(
q
p

)
= 2q.

(d) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S ⊆ U be a set of m elements we wish to hash. Prove that if we
choose h from H at random, the expected number of pairs (x, y) in S that collide
is ≤ m−1

2
.

(e) Prove that with probability at least 7/8, no bin gets more than 1+2
√

2m elements.
Hint: use part (d).

To solve this question, you should use “Markov’s inequality”. Markov’s inequality
is a fancy name for a pretty obvious fact: if you have a non-negative random
variable X with expectation E[X], then for any k > 0, Pr(X > kE[X]) ≤ 1/k.
For instance, the chance that X is more that 100 times its expectation is at
most 1/100. You can see that this has to be true just from the definition of
“expectation”.

(25 pts) 2. Doing more with binary search trees.

Let B be a binary search tree with distinct values, and let h be the height of B.

a. Write an algorithm findFirstGE(x) that finds the smallest value in B that
is greater than or equal to x. If no such value exists in B, return ∞.
As an example, suppose B contains the values 1, 2, 3, 4, 5. Then:

– findFirstGE(2) returns 2,

– findFirstGE(2.5) returns 3, and

– findFirstGE(6) returns ∞
What is the running time of your algorithm in terms of h?

b. Write an algorithm getAllBetween(x, y) that returns all values v in B,
such that x ≤ v ≤ y, in sorted order.
For example, with B containing 1, 2, 3, 4, 5:

– getAllBetween(2, 4) returns [2, 3, 4],

– getAllBetween(−10, 2) returns [1, 2], and

– getAllBetween(3, 4.5) returns [3, 4]

What is the running time of your algorithm?

c. What if we just want to know the number of elements between x and y?
For example, with B containing 1, 2, 3, 4, 5:

– countAllBetween(2, 4) returns 3,

– countAllBetween(−10, 2) returns 2, and

– countAllBetween(3, 4.5) returns 2

Can you find a faster algorithm?
Hint: Recall from recitation that one way to work out the balance factor of
a tree is to store the height at each node. You may want to use a similar
idea in this problem, i.e. consider storing an additional piece of information
at each node to help your algorithm Be careful though, you need to show
how to maintain this information during an insert into B, and also that this
extra information does not cause insert to take more than Θ(h) time.

(25 pts) 3. The list-update problem

Suppose we have n data items x1, x2, . . . , xn that we wish to store in a linked list
in some order. Let’s say the cost for performing a lookup(x) operation is $1 if x
is in the head of the list, $2 if x is the second element in the list, and so on.

For instance, say there are 4 items and it turns out that we end up accessing
x1 3 times, x2 5 times, x3 once, and x4 twice. Then, the cost of using the list
(x2, x1, x4, x3) will $21.

The Move-to-Front (MTF) strategy is the following algorithm for organizing the
list if we don’t know in advance how many times we will access each element.
We begin with the elements in their initial order (x1, x2, . . . , xn). Then, whenever
we perform a lookup(x) operation, we move the item accessed to the front of the
list. Let us say that performing the movement is free. For instance, if the first
operation was lookup(x3), then we pay $3, and afterwards the list will look like
(x3, x1, x2, x4 . . .).

i. Suppose n = 4 and we use MTF starting from the order (x1, x2, x3, x4). If we
perform the following 4 operations:

lookup(x4), lookup(x2), lookup(x4), lookup(x2).

What does the list look like in the end and what was the total cost?

2

ii. What is the best static list1 in hindsight,i.e, what is the best static list assum-
ing that the requests are known in advance? Give a proof for your solution.

iii. Prove that the total cost of the MTF algorithm on a sequence of m operations
(think of m as much larger than n) is at most 2Cstatic + n2 where Cstatic is
the cost of the best static list in hindsight for those m operations.
Hint: Assume that the best static list is x1, x2, . . . , xn. If i < j but xj is in
front of xi in the MTF list, let’s say that xj has “cut in line” in front of xi.
Now, imagine that each element xi has a piggy bank with $1 for everyone
that is currently cutting in line in front of it.

iv. So far we have assumed that the cost of moving an element to the front of the
list is zero. Lets remove this assumption. Lets say that the cost of moving an
element from position j to the front of the list is j − 1. How does the bound
on the cost of the MTF algorithm change in this model?
Hint: Go through the same analysis as in the previous model but now keeping
track of the additional cost.

Note: one nice use of this is for data compression. You store each ascii character
in a list in this way, and then when reading a string of text, for each character
you output its index i in the list before moving the character to the front (this
requires only O(log i) bits, which will be small if the item was close to the front
of the list).

(25 pts) 4. Tunneling Towns

Imagine that you have n pairs of towns: (w1, e1), (w2, e2)... (wn, en). A large
mountain range divides all the pairs, with each ei lying east of the range, and
each wi lying to the west.

You are given the order of the towns on the west of the range - from north
to south - and the order of the towns on the east of the range. For example we
may have the western order given as: w1, w3, w2, w4, w5, and the eastern order as:
e2, e1, e4, e3, e5. This is illustrated in Figure 1.

Each pair of towns, (wi, ei), wishes to build a tunnel between its two members.
Unfortunately, this is not always possible, since no pair of tunnels may cross. For
example, in the above diagram, we could connect w1 and e1 via a tunnel, or we
could connect w2 and e2, but not both, since those tunnels would cross. This is
illustrated in Figure 2.

i. Let us define an optimal placement of tunnels for some set of towns T as
any placement which maximizes the total number of pairs that are connected
(without crossing any tunnels). Find an optimal placement of tunnels for the
previous example (Figure 1).

ii. Using dynamic programming, give an algorithm that finds the longest path
in a directed acyclic graph.

1By a static list we mean that the list is not allowed to change after every request.

3

w1

w3

w2

w4

w5

e2

e1

e4

e3

e5

M
ou

n
ta

in
s

Figure 1: The towns, unconnected.

w1

w3

w2

w4

w5

e2

e1

e4

e3

e5

M
ou

n
ta

in
s

b
b

b
bb

(a) Pair 1 connected.

w1

w3

w2

w4

w5

e2

e1

e4

e3

e5

M
ou

n
ta

in
s

%
%

%
%

%%

(b) Pair 2 con-
nected.

w1

w3

w2

w4

w5

e2

e1

e4

e3

e5

M
ou

n
ta

in
s

%
%

%
%

%%
b

b
b

bb

(c) Pairs 1 & 2
connected. Note
that this is illegal,
because the tunnels
cross.

Figure 2: The towns with various connections.

iii. Give an algorithm that solves the tunnel placement problem in O(n2) time
by creating a DAG and finding the longest path in it.

4

