
15-451 Algorithms, Spring 2009

Homework # 4 due: Tue-Thu 24-26, March , 2009

Ground rules:

• This is an oral presentation assignment. You should work in groups of three. Please sign
up for a 1-hour time slot for your group in recitation on Wednesday, March 18. From
Thursday morning until Sunday, March 22 at 11:59pm, there will be a signup sheet posted
on the door of Doherty Hall, 4301a. You can use this to sign up, although the later you
do this, the less likely you are to get a good time slot.

• Each person in the group must be able to present every problem. The TA/Professor will
select who presents which problem. The other group members may assist the presenter.

• You are not required to hand anything in at your presentation, but you may if you choose.

1. Modifying Boruvka’s MST Algorithm (Maxim Makatchev)

Boruvka’s MST algorithm (from 1926) is a bit like a distributed version of Kruskal. We
begin by having each vertex mark the shortest edge incident to it. (For instance, if the
graph were a 4-cycle with edges of lengths 1, 3, 2, and 4 around the cycle, then two
vertices would mark the “1” edge and the other two vertices will mark the “2” edge.) For
the sake of simplicity, assume that all edge lengths are distinct so we don’t have to worry
about how to resolve ties. Assume also that graph is connected, so m = Ω(n), where m
is number of edges and n is number of vertices. This creates a forest F of marked edges.
(Convince yourself why there won’t be any cycles!). In the next step, each tree in F marks
the shortest edge incident to it (the shortest edge having one endpoint in the tree and one
endpoint not in the tree), creating a new forest F ′. This process repeats until we have
only one tree.

We will consider a slight modification of Boruvka’s algorithm, where after we find the
shortest edges incident to each of the vertices of graph G, we add them to the current
forest F and then we contract the graph G by these edges. This procedure is repeated
until there is no edges left.

Definition: Graph G′ is a contraction of G by an edge e = (u, v) if the set of vertices of
G′ excludes both u and v, merging them into a new vertex x, and the set of edges of G′

is formed from the set of edges of G by renaming all u’s and v’s in the original edges into
x. Note that this operation may produce duplicate edges (s, t), (s, t) and self-loops (u, u).
So contraction is concluded with a cleaning phase, which removes self-loops and replaces
duplicate edges with the one of them that has shortest length.

(a) Prove the correctness of the contraction-based Boruvka’s algorithm. (Hint: Show
that the set of edges in the current forest is always contained in the MST).

(b) Write a pseudocode for the single iteration of the contraction-based Boruvka’s al-
gorithm. This single iteration should run in O(m) time and have no fancy data
structures. Remember, that each iteration includes finding the shortest edges, and
contraction, which itself includes a “cleaning” phase that removes duplicate edges
and self-loops.

1

(c) Prove an upper bound of O(m log n) on the running time of this algorithm.

Now that you know the contraction-based Boruvka algorithm, you will show that it
gives particular good (linear) running time on sparse graphs that remain sparse after
contractions. One of such classes is a class of planar graphs—the graphs that can be
laid out on a plane such that no two edges intersect. In particular, it is known that
(a) for any planar graph with at least 2 edges m ≤ 3n− 6 and (b) a contraction of
a planar graph is itself a planar graph.

(d) Show that for planar graphs contraction-based Boruvka’s algorithm runs in O(n)
time.

2. Problem 2: All-Pairs Shortest Paths (David Abraham)

(a) Suppose a government agency wants to monitor all traffic on the internet. One
way to do this would be to set up a computer and require that all traffic be routed
through this computer. In this problem, we are going to write an algorithm to find
the shortest path between all pairs of computers, subject to the requirement that all
paths must go through a given computer.

Formally, suppose we are given an undirected graph G = (V, E) in which each edge
e has a length l(e) >= 0, and a special vertex x ∈ V . Write the fastest algorithm
you can to find the length of the shortest path between all pairs of vertices, where
the shortest path must go through x. It is OK if the shortest path from vertex u to
v first goes to v, then goes to x and finally goes back to v.

(b) Now suppose that three government agencies want to monitor the internet traffic,
all independently of one another. This means that our shortest paths now have to
go through three different computers, x, y and z, though the order does not matter.

Write the fastest algorithm you can to find the length of the shortest path between all
pairs of vertices, where the shortest path must go through x, y and z in no particular
order.

(c) What is the running time of your algorithm if all paths must go through lg n different
vertices? Is this polynomial time?

(d) Suppose that the three government agencies decide to cooperate and share data.
Now our shortest paths only have to go through one of x, y and z.

Write the fastest algorithm you can to find the length of the shortest path between
all pairs of vertices, where the shortest path must go through x, y or z.

For all of the questions above, please have your algorithms ready to present in pseudocode

3. Problem 3: Min-Bisection (Pranjal Awasthi)

Let G = (V, E) be an undirected graph with the vertex set V and edge set E. A bisection
of G is a partition of the vertex set into two subsets V1 and V2 of equal size, i.e.,

|V1 − V2| =
{

0 if |V | is even
1 if |V | is odd

2

Note that every vertex must belong to one and only one of the subsets. The min-bisection
problem is to find a bisection of G which minimizes the number of edges connecting the
two subsets. An edge e connects V1 and V2, if one of its end points lies in V1 and the
other lies in V2. In general there is no known polynomial time algorithm for this problem.
However, if the graph is a tree, the problem becomes easier.

Design a polynomial time algorithm to solve min-bisection when the input graph G is
a tree1. You should be able to prove the correctness of your algorithm and analyze its
running time.

Hint: Think dynamic programming.

1The tree need not be a binary tree

3

