
15-451 Algorithms, Spring 2009

Homework # 6 due: Tue-Thu, April 21-23, 2009

Ground rules:

• This is an oral presentation assignment. You should work in groups of three. From Thursday
morning until Sunday, April 12 at 11:59pm, there will be a signup sheet posted on the door
of Doherty Hall, 4301a. You can use this to sign up, although the later you do this, the less
likely you are to get a good time slot.

• Each person in the group must be able to present every problem. The TA/Professor will
select who presents which problem. The other group members may assist the presenter.

• You are not required to hand anything in at your presentation, but you may if you choose.

Problems:

1. [Graduation revisited] Cranberry-Melon University has switched to a less draconian policy
for graduation requirements than that used on Homework 5. As in Homework 5, there is a
list of requirements r1, r2, . . . , rm, where each requirement ri is of the form: “you must take
at least ki courses from set Si”. However, unlike the case in Homework 5, a student may use
the same course to fulfill several requirements. For example, if one requirement stated that
a student must take at least one course from {A, B, C}, another required at least one course
from {C, D, E}, and a third required at least one course from {A, F, G}, then a student
would only have to take A and C to graduate.

Now, consider an incoming freshman interested in finding the minimum number of courses
that he (or she) needs to take in order to graduate.

(a) Prove that the problem faced by this freshman is NP-hard, even if each ki is equal to 1.
Specifically, consider the following decision problem: given n items labeled 1, 2, . . . , n,
given m subsets of these items S1, S2, . . . , Sm, and given an integer k, does there exist
a set S of at most k items such that |S

⋂
Si| ≥ 1 for all Si. Prove that this problem is

NP-complete (also say why it is in NP).

(b) Show how you could use a polynomial-time algorithm for the above decision problem
to also solve the search-version of the problem (i.e., actually find a minimum-sized set
of courses to take).

(c) We could define a fractional version of the graduation problem by imagining that in
each course taken, a student can elect to do a fraction of the work between 0.00 and
1.00, and that requirement ri now states “the sum of your fractions of work in courses
taken from set Si must be at least ki” (courses not taken count as 0). The student now
wants to know the least total work needed to satisfy all requirements and graduate.

Show how this problem can be solved using linear programming. Be sure to specify
what the variables are, what the constraints are, and what you are trying to minimize
or maximize.
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2. [Knapsack revisited] Recall that in the knapsack problem we have n items, where each item
i has a profit pi and a size si, and we also have a knapsack of size S. The goal is to find the
maximum total profit of items that can be placed into the knapsack. In particular, out of
all sets of items whose total size is at most S, we want the set of highest profit. All sizes and
profits are assumed to be integers and we also assume that the size of each item is less than
the size of the knapsack. Your notes contain a dynamic programming algorithm to solve this
problem whose running time is O(nS).

• One issue is that if the sizes are very large numbers, then O(nS) may not be so good.
In this part, we want you to come up with an alternative dynamic programming based
algorithm whose running time is O(nV ), where V is the value of the optimal solution.
So, this would be a better algorithm if the sizes are large but the profits are not too
great.

Note: your algorithm should work even if the value V of the optimal solution is not
known in advance. Actually, this is not such a big deal — you may want to first design
your algorithm as if V were known and then find a way to get rid of that assumption.

Hint: it might help to look at the algorithm from class and think about what the
subproblems were. Then think about what subproblems you want to use instead for
the new goal.

• The O(nV ) algorithm is not great if the profits are large. One way to deal with this issue
is to scale down the profits by some factor, say K, and then run the O(nV ) algorithm
on this reduced instance. Naturally, the solution we now get is not guaranteed to be
the optimal one. But we have made our algorithm faster. In this part, you will quantify
this tradeoff between solution quality and running time.

Consider the following algorithm for solving the knapsack problem which takes as input
a parameter ǫ:

(a) Scale down all the profits by a factor of K (So the profits change from pi to ⌊ pi

K
⌋.)

Note: The value of K might depend on ǫ.

(b) Run the O(nV ) algorithm on this new instance and use that solution to fill the
knapsack.

Show that given any 0 < ǫ < 1, the above algorithm can pick K suitably such that

– The running time is polynomial in n and 1

ǫ
.

– The algorithm outputs a solution whose value VA satisfies VA ≥ (1− ǫ)V , where V

is the value of the optimal solution of the original knapsack instance.

Aside: You have shown that although solving the Knapsack problem exactly is NP-complete,
getting 99.99% close to the optimal solution is easy! (by selecting ǫ = 0.01)

3. [TSP approximation] Given a weighted undirected graph G, a traveling salesman tour for G

is the shortest tour that starts at some node, visits all the vertices of G, and then returns to
the start. We will allow the tour to visit vertices multiple times (so, our goal is the shortest
cycle, not the shortest simple cycle). This version of the TSP that allows vertices to be

2



visited multiple times is sometimes called the metric TSP problem, because we can think of
there being an implicit complete graph H defined over the nodes of G, where the length of
edge (u, v) in H is the length of the shortest path between u and v in G. (By construction,
edge lengths in H satisfy the triangle inequality, so H is a metric. We’re assuming that all
edge weights in G are positive.)

(a) Briefly: show why we can get a factor of 2 approximation to the TSP by finding a
minimum spanning tree T for H and then performing a depth-first traversal of T . (If
you get stuck, the CLRS book does this in a lot more sentences in section 35.2.1.)

(b) The minimum spanning tree T must have an even number of nodes of odd degree (only
considering the edges in T ). In fact, any (undirected) graph must have an even number
of nodes of odd degree. Why?

(c) Let M be a minimum-cost perfect matching (in H) between the nodes of odd degree
in T . I.e., if there are 2k nodes of odd degree in T , then M will consist of k edges in
H , no two of which share an endpoint. Prove that the total length of edges in M is at
most one-half the length of the optimal TSP tour.1

(d) Fact: Given an undirected graph with all the vertices having even degree, there exists
a polynomial time algorithm which outputs an Euler tour of the graph, i.e., a cycle
which travels each edge exactly once (it may visit some vertices multiple times). The
algorithm also works for multigraphs.

Combine this fact with your solutions to the above parts to get a 1.5 approximation to
the TSP. Hint: think about the (multi)graph you get from the union of edges in T and
M .

The algorithm in (d) is due to Christofides [1976]. Extra credit and PhD thesis: Find an
algorithm that approximates the TSP to a factor of 1.49.

1We didn’t prove it in class, but there are efficient algorithms for finding minimum cost perfect matchings in
arbitrary graphs (not just bipartite graphs).
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