
Lecture 20

NP-Completeness II

20.1 Overview

In the last lecture, we defined the class NP and the notion of NP-completeness, and proved
that the Circuit-SAT problem is NP-complete. In this lecture we continue our discussion of NP-
Completeness, showing the following results:

• CIRCUIT-SAT ≤p 3-SAT (proving 3-SAT is NP-complete)

• 3-SAT ≤p CLIQUE (proving CLIQUE is NP-complete)

• NP-completeness of Independent Set and Vertex Cover

20.2 Introduction

Let us begin with a quick recap of our discussion in the last lecture. First of all, to be clear in our
terminology, a problem means something like 3-coloring or network flow, and an instance means a
specific instance of that problem: the graph to color, or the network and distinguished nodes s and
t we want to find the flow between. A decision problem is just a problem where each instance is
either a YES-instance or a NO-instance, and the goal is to decide which type your given instance
is. E.g., for 3-coloring, G is a YES-instance if it has a 3-coloring and is a NO-instance if not. For
the Traveling Salesman Problem, an instance consists of a graph G together with an integer k, and
the pair (G, k) is a YES-instance iff G has a TSP tour of total length at most k.

We now define our key problem classes of interest.

P: The class of decision problems Q that have polynomial-time algorithms. Q ∈ P if there exists
a polynomial-time algorithm A such that A(I) = YES iff I is a YES-instance of Q.

NP: The class of decision problems where at least the YES-instances have short proofs (that can
be checked in polynomial-time). Q ∈ NP if there exists a verifier V (I,X) such that:

• If I is a YES-instance, then there exists X such that V (I,X) = YES,

• If I is a NO-instance, then for all X, V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.
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co-NP: vice-versa — there are short proofs for NO-instances. Specifically, Q ∈ co-NP if there
exists a verifier V (I,X) such that:

• If I is a YES-instance, for all X, V (I,X) = YES,

• If I is a NO-instance, then there exists X such that V (I,X) = NO,

and furthermore the length of X and the running time of V are polynomial in |I|.

For example, the problem Circuit-Equivalence: “Given two circuits C1, C2, do they com-
pute the same function?” is in co-NP, because if the answer is NO, then there is a short,
easily verified proof (an input x such that C1(x) 6= C2(x)).

A problem Q is NP-complete if:

1. Q ∈ NP, and

2. Any other Q′ in NP is polynomial-time reducible to Q; that is, Q′ ≤p Q.

If Q just satisfies (2) then it’s called NP-hard. Last time we showed that the following problem is
NP-complete:

Circuit-SAT: Given a circuit of NAND gates with a single output and no loops (some
of the inputs may be hardwired). Question: is there a setting of the inputs that causes
the circuit to output 1?

Aside: we could define the search-version of a problem in NP as: “...and furthermore, if I is
a YES-instance, then produce X such that V (I,X) = YES.” If we can solve any NP-complete
decision problem in polynomial time then we can actually solve search-version of any problem
in NP in polynomial-time too. The reason is that if we can solve an NP-complete problem in
polynomial time, then we can solve the ESP in polynomial time, and we already saw how that
allows us to produce the X for any given verifier V .

Unfortunately, Circuit-SAT is a little unweildy. What’s especially interesting about NP-completeness
is not just that such problems exist, but that a lot of very innocuous-looking problems are NP-
complete. To show results of this form, we will first reduce Circuit-SAT to the much simpler-looking
3-SAT problem (i.e., show Circuit-SAT ≤p 3-SAT). Recall the definition of 3-SAT from last time:

Definition 20.1 3-SAT: Given: a CNF formula (AND of ORs) over n variables x1, . . . , xn, where
each clause has at most 3 variables in it. Goal: find an assignment to the variables that satisfies
the formula if one exists.

Theorem 20.1 CIRCUIT-SAT ≤p 3-SAT. I.e., if we can solve 3-SAT in polynomial time, then
we can solve CIRCUIT-SAT in polynomial time (and thus all of NP).

Proof: We need to define a function f that converts instances C of Circuit-SAT to instances of
3-SAT such that the formula f(C) produced is satisfiable iff the circuit C had an input x such that
C(x) = 1. Moreover, f(C) should be computable in polynomial time, which among other things
means we cannot blow up the size of C by more than a polynomial factor.
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First of all, let’s assume our input is given as a list of gates, where for each gate gi we are told
what its inputs are connected to. For example, such a list might look like: g1 = NAND(x1, x3);
g2 == NAND(g1, x4); g3 = NAND(x1, 1); g4 = NAND(g1, g2); .... In addition we are told which
gate gm is the output of the circuit.

We will now compile this into an instance of 3-SAT as follows. We will make one variable for each
input xi of the circuit, and one for every gate gi. We now write each NAND as a conjunction of 4
clauses. In particular, we just replace each statement of the form “y3 = NAND(y1, y2)” with:

(y1 OR y2 OR y3) ← if y1 = 0 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 0 and y2 = 1 then we must have y3 = 1
AND (y1 OR y2 OR y3) ← if y1 = 1 and y2 = 0 then we must have y3 = 1
AND (y1 OR y2 OR y3). ← if y1 = 1 and y2 = 1 we must have y3 = 0

Finally, we add the clause (gm), requiring the circuit to output 1. In other words, we are asking:
is there an input to the circuit and a setting of all the gates such that the output of the circuit
is equal to 1, and each gate is doing what it’s supposed to? So, the 3-CNF formula produced is
satisfiable if and only if the circuit has a setting of inputs that causes it to output 1. The size of the
formula is linear in the size of the circuit. Moreover, the construction can be done in polynomial
(actually, linear) time. So, if we had a polynomial-time algorithm to solve 3-SAT, then we could
solve circuit-SAT in polynomial time too.

Important note: Now that we know 3-SAT is NP-complete, in order to prove some other NP

problem Q is NP-complete, we just need to reduce 3-SAT to Q; i.e., to show that 3-SAT ≤p Q. In
particular, we want to construct a (polynomial-time computable) function f that converts instances
of 3-SAT to instances of Q that preserves the YES/NO answer. This means that if we could solve
Q efficiently then we could solve 3-SAT efficiently. Make sure you understand this reasoning — a
lot of people make the mistake of doing the reduction the other way around. Doing the reduction
the wrong way is just as much work but does not prove the result you want to prove!

20.3 CLIQUE

We will now use the fact that 3-SAT is NP-complete to prove that a natural graph problem called
the Max-Clique problem is NP-complete.

Definition 20.2 Max-Clique: Given a graph G, find the largest clique (set of nodes such that
all pairs in the set are neighbors). Decision problem: “Given G and integer k, does G contain a
clique of size ≥ k?”

Note that Max-Clique is clearly in NP.

Theorem 20.2 Max-Clique is NP-Complete.

Proof: We will reduce 3-SAT to Max-Clique. Specifically, given a 3-CNF formula F of m clauses
over n variables, we construct a graph as follows. First, for each clause c of F we create one node
for every assignment to variables in c that satisfies c. E.g., say we have:

F = (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4) ∧ (x2 ∨ x3) ∧ . . .
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Then in this case we would create nodes like this:

(x1 = 0, x2 = 0, x4 = 0) (x3 = 0, x4 = 0) (x2 = 0, x3 = 0) . . .

(x1 = 0, x2 = 1, x4 = 0) (x3 = 0, x4 = 1) (x2 = 0, x3 = 1)
(x1 = 0, x2 = 1, x4 = 1) (x3 = 1, x4 = 1) (x2 = 1, x3 = 0)
(x1 = 1, x2 = 0, x4 = 0)
(x1 = 1, x2 = 0, x4 = 1)
(x1 = 1, x2 = 1, x4 = 0)
(x1 = 1, x2 = 1, x4 = 1)

We then put an edge between two nodes if the partial assignments are consistent. Notice that
the maximum possible clique size is m because there are no edges between any two nodes that
correspond to the same clause c. Moreover, if the 3-SAT problem does have a satisfying assignment,
then in fact there is an m-clique (just pick some satisfying assignment and take the m nodes
consistent with that assignment). So, to prove that this reduction (with k = m) is correct we need
to show that if there isn’t a satisfying assignment to F then the maximum clique in the graph has
size < m. We can argue this by looking at the contrapositive. Specifically, if the graph has an
m-clique, then this clique must contain one node per clause c. So, just read off the assignment
given in the nodes of the clique: this by construction will satisfy all the clauses. So, we have shown
this graph has a clique of size m iff F was satisfiable. Also, our reduction is polynomial time since
the graph produced has total size at most quadratic in the size of the formula F (O(m) nodes,
O(m2) edges). Therefore Max-Clique is NP-complete.

20.4 Independent Set and Vertex Cover

An Independent Set in a graph is a set of nodes no two of which have an edge. E.g., in a 7-cycle,
the largest independent set has size 3, and in the graph coloring problem, the set of nodes colored
red is an independent set. The Independent Set problem is: given a graph G and an integer k,
does G have an independent set of size ≥ k?

Theorem 20.3 Independent Set is NP-complete.

Proof: We reduce from Max-Clique. Given an instance (G, k) of the Max-Clique problem, we
output the instance (H, k) of the Independent Set problem where H is the complement of G.
That is, H has edge (u, v) iff G does not have edge (u, v). Then H has an independent set of size
k iff G has a k-clique.

A vertex cover in a graph is a set of nodes such that every edge is incident to at least one of them.
For instance, if the graph represents rooms and corridors in a museum, then a vertex cover is a set
of rooms we can put security guards in such that every corridor is observed by at least one guard.
In this case we want the smallest cover possible. The Vertex Cover problem is: given a graph
G and an integer k, does G have a vertex cover of size ≤ k?

Theorem 20.4 Vertex Cover is NP-complete.
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Proof: If C is a vertex cover in a graph G with vertex set V , then V − C is an independent set.
Also if S is an independent set, then V −S is a vertex cover. So, the reduction from Independent

Set to Vertex Cover is very simple: given an instance (G, k) for Independent Set, produce
the instance (G,n − k) for Vertex Cover, where n = |V |. In other words, to solve the question
“is there an independent set of size at least k” just solve the question “is there a vertex cover of
size ≤ n− k?” So, Vertex Cover is NP-Complete too.

20.5 Beyond NP

As mentioned earlier, it is an open problem whether P 6= NP (though everyone believes they are
different). It is also an open problem whether NP 6= co-NP (though again, everyone believes they
are different). One can also define even more expressive classes. For instance, PSPACE is the class
of all problems solvable by an algorithm that uses a polynomial amount of memory. Any problem
in NP is also in PSPACE, because one way to solve the problem is to take the given instance I

and then simply run the verifier V (I,X) on all possible proof strings X, halting with YES if any of
the runs outputs YES, and halting with NO otherwise. (Remember, we have a polynomial upper
bound on |X|, so this uses only a polynomial amount of space.) Similarly, any problem in co-NP

is also in PSPACE. Unfortunately, it is not even known for certain that P 6= PSPACE (though
all the classes mentioned above are believed to be different). One can also define classes that are
provably larger than P and NP. For instance, EXPtime is the class of all problems solvable in
time O(2nc

) for some constant c. This class is known to strictly contain P. The class NEXPtime

is the class of all problems that have a verifier which runs in time O(2nc

) for some constant c. This
class is known to strictly contain NP. The class of all Turing-computable problems is known to
strictly contain all of the above, and some problems such as the Halting problem (given a program
A and an input x, determine whether or not A(x) halts) are not even contained in that!

20.6 NP-Completeness summary

NP-complete problems have the dual property that they belong to NP and they capture the
essence of the entire class in that a polynomial-time algorithm to solve one of them would let you
solve anything in NP.

We proved that 3-SAT is NP-complete by reduction from Circuit-SAT. Given a circuit C, we
showed how to compile it into a 3-CNF formula by using extra variables for each gate, such that
the formula produced is satisfiable if and only if there exists x such that C(x) = 1. This means
that a polynomial-time algorithm for 3-SAT could solve any problem in NP in polynomial-time,
even factoring. Moreover, 3-SAT is a simple-looking enough problem that we can use it to show
that many other problems are NP-complete as well, including Max-Clique, Independent Set,
and Vertex Cover.


