
Notes on Simple Analysis for Parallel Maximal

Independent Set and Maximal Matching Algorithms

Julian Shun

1 Maximal Independent Set (MIS)

For a graph G = (V,E) we use N(V ) to denote the set of all neighbors of vertices in V . A
maximal independent set U ⇢ V is thus one that satisfies N(U)\U = ; and N(U)[U = V .
We use N(v) as a shorthand for N({v}) when v is a single vertex. We use G[U ] to denote
the vertex-induced subgraph of G by vertex set U , i.e., G[U ] contains all vertices in U
along with edges of G with both endpoints in U . A simple parallel algorithm due to Luby
[4] for computing the maximal independent set is as follows:

Algorithm 1 Luby’s algorithm for MIS

1: procedure MIS(G = (V,E))
2: if |V | = 0 then return ;
3: else

4: randomly assign unique priorities ⇡v to each v 2 V
5: let W be the set of vertices in V with higher priority than all
6: of its neighbors (i.e. vertices v such that 8u 2 N(v), ⇡v > ⇡u)
7: V 0 = V \ (W [N(W ))
8: return W [ MIS(G[V 0])

Theorem 1.1. Each recursive call to MIS removes half of the number of edges in G in

expectation.

Proof. Here is a simple analysis due to Métivier et. al. [5]:
Consider an edge (u, v) in G. Define the indicator variable Xu to be the event that u’s

priority is greater than that of all of its neighbors and all of v’s neighbors (excluding u
itself). Note that if this event happens, u will be included in the MIS, and all edges incident
to u and v will be removed. For the purpose of this analysis we say that if Xu happens,
then u preemptively removes v and the edges incident to v. Note that any vertex can be
preemptively removed at most once, and any edge (u, w) can only be preemptively removed
twice, once when u is preemptively removed and once when w is preemptively removed. Note
that Pr(Xu = 1) � 1/(d(u) + d(v)) (it is an inequality becasue u and v may share some
neighbors).

Since we double counted the edge removals, the average number of edges removed is
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as d(v) edges are removed if u preemptively removes v and d(u) edges are removed if v
preemptively removes u. This quantity is at least
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Theorem 1.2. The total expected work of MIS is O(|E|) and total expected span is O(log2 |E|).

Proof. Each recursive call does O(|E|) work and decreases the number of edges by at least
half, so the total work O(|E|). Since the number of edges decreases by a constant fraction
in each round, we have O(log |E|) rounds. Each round requires O(log |E|) span for checking
the priorities and producing the subgraph. Thus the total span is O(log2 |E|).

2 Maximal Matching

For a graph G = (V,E) we use N(E) to denote the neighboring edges of E (ones that share
a vertex). A maximal matching E 0 is one that satisfies N(E 0)\E 0 = ; and N(E 0)[E 0 = E.
We use N(e) as a shorthand for N({e}) when e is a single edge. We use G[E 00] to denote the
edge-induced subgraph of G by edge set E 00.

Algorithm 2 Luby’s algorithm for MIS

1: procedure Matching(G = (V,E))
2: if |E| = 0 then return ;
3: else

4: randomly assign unique priorities ⇡e to each e 2 E
5: let W be the set of edges in E with higher priority than all
6: of its neighboring edges (i.e. edges e such that 8e0 2 N(e), ⇡e > ⇡e0)
7: E 0 = E \ (W [N(W ))
8: return W [ Matching(G[E 0])

Theorem 2.1. Each recursive call to Matching removes half of the number of edges in G
in expectation.

Proof. The proof of Métivier et. al. [5] can be adapted to the case of Matching (see [1]).
We say that an edge wins if it has higher priority than all of its neighboring edges. If an
edge wins it preemptively deletes itself and all of its neighboring edges from the graph. An
edge can only be preemptively deleted at most twice, once by a winning edge from each of
its endpoints. An edge (u, v) wins with probability 1/(d(u) + d(v) � 1), and if it wins it
preemptively deletes d(u)+ d(v)� 1 edges. Therefore, the expected number of edges deleted
is at least
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Theorem 2.2. The total expected work of Matching is O(|E|) and total expected span is

O(log2 |E|).



Proof. The proof is similar to that of MIS.

Note that this maximal matching algorithm and analysis is much simpler than previous
parallel algorithms for maximal matching [2, 3].
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