i

List Ranking and Parallel
Tree Contraction

Margaret Reid-Miller
Gary L. Miller
Francesmary Modugno

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

2 Chapter 2. List Ranking and Parallel Tree Contraction

This chapter discusses parallel algorithms for two problems: list ranking and
parallel tree contraction. List ranking is used often as part of a solution to
other parallel algorithms. While parallel tree contraction is a technique that
has wide application to tree based problems.

2.1
List Ranking

A common problem in computer science is to find the location of an element
in a linked list with respect to the first element of the list, called the head of
the list. This problem, referred to as list ranking, is a fundamental operation
for many applications such as computing the prefix sum for any associative
operation over a linked list; determining the preorder numbering of nodes on
trees; and evaluating expressions on trees. On a RAM the problem can be
solved by a straightforward sequential algorithm that traverses the linked list
in O(n) time.

In this section we discuss various parallel list ranking algorithms. We
start by introducing a simple deterministic parallel algorithm due to Wyl-
lie [Wyl79]. Wyllie’s algorithm is not optimal; the total “work” performed
by all the processors is greater than the work performed by a single proces-
sor using a sequential algorithm. We then introduce a randomized algorithm
by Miller and Reif [MR85] that optimizes the work, but still needs as many
processors as cells in the linked list. This algorithm was improved by An-
derson and Miller [AM90] to use an optimal number of processors and is
described next. The final section give another optimal solution by Ander-
son and Miller [AMS88] which is deterministic. The following two chapters
introduce deterministic coin tossing and discuss list ranking further.

2.1.1 The problem:

We consider the slightly modified problem of finding the location or rank of

an element in a linked list with respect to the last element, or tail of the list.

From solutions to this problem, it is not difficult to obtain solutions to the

problem of finding an element’s rank with respect to the head of the list.
Formally, the problem is stated as follows:

Given: a linked list of values.

Output: a cell’s position with respect to the tail of list.

2.1 List Ranking 3

Assumptions: the linked list is in a continuous block of shared memory and
the tail of the list points to a distinguished value, nil.

In order to evaluate the algorithms of this section, we examine their
efficiency in terms of the number of processors they require and the total
amount of work performed by the processors. An algorithm is optimal if it
1s not possible to reduce simultaneously both the runtime and the number of
processors. For the algorithms in this chapter, when we say an algorithm is
optimal we mean a stronger notion: that the amount of work required is no
more than the amount of work required by an optimal sequential algorithm for
the same problem. For list ranking this implies that the work done be O(n).
The amount of work done can be measured in two ways: it is equal to the
number of processors used times the runtime of the algorithm; or it is equal
to the sum of the actual amount of work done by each processor. Very often
the two measurements are equal. They differ only when many processors are
initially used but become idle as time goes on. In this section we see examples
of when the two measurements are and are not equal.

Before beginning, we take a moment to briefly explain some notation.
Throughout the entire chapter we describe algorithms in a parallel Algol like
code for a PRAM with a host. The meaning of most constructs is clear from
context. The “in Parallel do body’ construct is intended to mean that the
host broadcasts body one instruction at a time to the each processor, which
then executes each instruction as it arrives. In the “in Parallel while con-
dition do body’ construction the condition is computed by the host and while
it is true the host broadcast body an instruction at a time to the individual
processors. Finally, the special symbol “I” is used to emphasize that the
element indexed is local to that processor. Any other index into the array of
elements may or may not be local to the processor.

2.1.2 Wyllie’s Algorithm for List Ranking

Wryllie presented the simplest algorithm for the list ranking problem.
While the algorithm is not optimal, it serves to illustrate a technique that
is common to all algorithms for list ranking problem known as dereferencing
or pointer jumping. Let v = v1 — vs — ... = v, be a link list of cells,
not necessarily stored in order. Pointer jumping is the process of reassigning
a cell’s successor link to point to its successor’s successor. That is, if v; —
Vit1 — Vita, then one application of pointer jumping to v; will yield v; — v;42.

Assume each cell, 7, has a pointer, suce[7], that points to its successor
in the linked list. The tail of the list points to n#l. Each cell i maintains a

4 Chapter 2. List Ranking and Parallel Tree Contraction

value rank[i] which is the distance the cell is from its current successor succli].
Initially, rank[i], is 1. The ranks on the edges keep track of how many pointers
were jumped and, in the end, tell us how far from the tail of the list a given
cell is. Each processor is assigned one cell.

ALGORITHM 2.1
Wyllie’s Algorithm for list ranking

Procedure Wyllie:
In Parallel rank[!l] := 1; /* initialize rank */
In Parallel while succ[head] # nil do
if succ[!] # nil do

rank[!] := rank[!] + rank[succ[!]]; /* update rank */
succ[!] := succ[succ[!]];
end if
end in parallel

end Wyllie

After each round each linked list is divided into two linked list of half the
length so that after O(logn) rounds all the cells point to nil and the rank[v]
is the rank of cell v. Figure 2.1 shows two rounds of the algorithm. For
illustrative purposes, cells are arranged in their order in the linked list. The
ranks of the cells after each round are given on the links. Observe, that the
algorithm is exclusive read and exclusive write and thus works on an EREW

PRAM.

Recall that the sequential algorithm takes time O(n). Since this parallel
algorithm uses n processors, each taking O(logn) time, the total work is
O(nlogn), which is not optimal. This is because each processor duplicates
the work done by another processor. For example, during Round 1 we produce
two chains when only one is needed. Processors for b, d, and f need not have
done any work because their final rank can easily be computed once the final
rank of their successors are known. Rather than all processors simultaneously
computing the final rank of their elements, some processors can wait until
the rank of their successor is known and then in unit time compute their own
rank.

O~O~0—~0~0~0~0~O—~n
O 00O T.00 O

0 00 OO0 O3

FIGURE 2.1
Two rounds of Wyllie’s list ranking algorithm. The black box indicates the value
nil. The numbers on the links represent the rank of a cell during that round.

There are two major issues that arise when trying to devise optimal list
ranking algorithms: resolving contention and identifying elements to “jump
over”. The first issue 1s that two adjacent list cells can not be jumped over at
the same time; otherwise two chains would form. To resolve contention Reif
introduced randomization into the Random_Mate algorithm [MR85], whereas
Cole and Vishkin [CV86b] developed deterministic coin tossing based on a
cell’s address, used by the list ranking algorithms discussed in the the next
two chapters. The randomized algorithm is given in the next section. The
second issue is addressed by Anderson and Miller [AM90, AMS88] in the two
following algorithms. In order to splice out elements efficiently, it is necessary
to have fewer processors than list cells. A processor needs to identify cells
on which to work, once its current cell is spliced out. A problem with naive
strategies is that as cells are removed from the linked list, it becomes more
difficult to find cells still in the list on which to work. A major feature of the
Anderson and Miller algorithms is a rather simple scheduling strategy that
allows the processors to keep busy with cells remaining in the linked list.

2.1.3 List Ranking using Randomization

In this section we present a very simple randomized algorithm for list
ranking. Tt is optimal in the sense that the total work performed is O(n),
although it requires one processor for each cell in the linked list and O(log n)

6 Chapter 2. List Ranking and Parallel Tree Contraction

time. The work is optimal because at each round a constant fraction of
the processors are freed up to perform other unrelated work. The algorithm
uses randomization to resolve contention. Randomization for the list ranking
problem has the advantage of being very simple to implement, while always
producing the correct answer. However, there is a very small probability that a
particular run of the algorithm may take a long time to complete. On average,
though, the randomized algorithms are much faster than many deterministic
algorithms, because they have much smaller constants.

Our intuition tells us that in order to eliminate excess work, once a
processor’s cell has been jumped over, the processor should stop jumping
cells. That is, at each round half the processors of the previous round (|n/2])
should stop jumping cells. Figure 2.2 shows the rounds of this ideal situation.
At the final round we have a tree of depth log n, where the numbers on the arcs
show the original distance from the cells to which the arcs point. For example,
cell a is distance 8 from n:l, and cell ¢ is distance 2 from cell e. Following
this splicing out phase is a reconstruction phase, in which the linked list is
reconstructed and the distance of each cell from the end of the list is computed
to obtain its rank. The reconstruction phase i1s simpler than the first phase
since the reconstruction is performed by undoing the work performed in the
first phase. Thus, the rank is computed for each cell in reverse order of their
removal. For example, first the rank is found for cell e, then cells ¢ and ¢, and

finally for cells b, d, f, and h.

How does a processor know whether it should jump a cell? One ap-
proach 1s use randomization to determine whether a processors should jump
a cell or not. Once a processor’s cell 1s jumped over, it stops working on this
ranking problem and is free to work on other problems until it is needed for
a reconstruction phase.

On each round, a processor determines whether to jump a cell by flipping
a coin and assigning a sex, either male or female. If the sex of a processor’s cell
is female and the next cell in the linked list has sex male then the processor
can dereference its cell. Otherwise, the processor waits for the next round.
We refer to this process as random mating. It is clear that no two adjacent
cells will be jumped over in the same round. Once a cell is jumped over
its processor becomes inactive until the reconstruction phase. As in Wyllie’s
algorithm, during the splicing out phase we maintain the cell’s distance in the
original linked list to its new successor by adding to its distance the distance
of 1ts old successor. At the end of the pointer jumping phase, cells either
point to ni and have their final value for rank or are inactive and their rank

2.1 List Ranking 7

O~-O-O-O0~-0-0-0O-0O-n

FIGURE 2.2
List ranking with minimal parallel work. The dotted cells indicate that correspond-

ing processors were inactive during the pointer jumping.

is their distance in the original linked list to their current successor.

After the pointer jumping phase is the reconstruction phase, in which
processors are reactivated in the reverse order in which they became inactive.
The distance of a cell from the tail of the list is equal to the distance to
its successor cell plus the distance of its successor cell to the tail of the list.
Because we reactivate the processors in the reverse order in which they became
inactive, when a processor is reactivated, its successor processor has already
been reactivated and has its final rank. Thus, a cell’s final rank is simply
the rank of itself plus the rank of its successor. In order to determine when
to reactivate a cell we use a time stamp, indicating which round a cell was
deactivated.

Each processor runs the same program and all the processors start each
iteration of the while loops at the same time. Algorithm 2.2 gives the parallel
Algol code for the Random_Mate algorithm.

Analysis

Using this algorithm, we guarantee that no two adjacent cells in the linked
list are jumped over in the same round. The probability a cell is jumped
over is % because, with probability %, sex(i) = F and, with probability %,

8 Chapter 2. List Ranking and Parallel Tree Contraction

ALGORITHM 2.2
A randomized list ranking algorithm

Procedure Random_Mate:
In Parallel rank[!] := 1; active[!] := true;
host set t := 1;

In Parallel while succ[head] # nil do

/* Initialize */

/* Pointer jumping phase */

if active[!] = true and succ[!] # nil then do

sex[!] := Random{M, F};

if sex[l] := F and sex[succ[!]]= M then do

time[succ[!]] :=t;
active[succ[!]] := false;
rank[!] := rank[!] + rank[succ[!]];
succ[!] := succ[succ[!]];
end then
t:=t+1;
end then

In Parallel while ¢ >0 do
if time[!] = t and succ[!] # nil then
rank[!] := rank[!] + rank[succ[!]];
t:=t—1;
end in parallel
end Random_Mate

/* Reconstruction phase */

sex[suce[i]] = M. How many rounds of random mate are needed to jump over

all cells?

THEOREM 2.1

Simple Random Mate computes the rank of each element of a linked list
of length n in O(logn) time using n processors on a EREW PRAM.

PROOF

Note that the cells are not statistically independent of each other. If a

cell 7 is jumped over then, with probability one, the cell suec[i] is not

jumped over in the same round. If cell 7 is not jumped over then the

cell suce[i] is jumped over in the same round with probability 1/3. This

is because the probability that succ[7] is jumped over given that i is not

2.1 List Ranking 9

jumped over is equal to the probability that both the succ[i] is jumped
over and 7 is not jumped over (1/4) divided by the probability that ¢
is not jumped over (3/4). However, the probability that a cell is not
jumped over in one round is independent of whether it is jumped over
in the next round. Let P; be the probability that the i** cell is still not
jumped over after £ rounds. Then

Pi=(3/4)%i=2,...,n

bl

If we choose k so that P; = 1/n ¢ > 2, then

k= c[log% n]

The probability that at least one cell has not been jumped over after k
rounds is the disjunction of the probabilities that each cell is not jumped
over after k rounds. This disjunction is bounded from above by the sum
of the probabilities of each cell not having been jumped over after &
rounds. That is,

Prob (number of cells not jumped over after k rounds > 0)

= PIVPV...VP,
2P
i=1

= l/n(c_l)

IN

Thus, for large n, the probability that the algorithm runs for more than
clog n rounds is small. The amount of work done is n+3n+(2)*n+... = O(n),
which is optimal, although the product of the runtime and processor count is
not.

2.1.4 A Simple, Optimal Randomized Algorithm
for List Ranking
The problem with the algorithm of the previous section is that i1t 1s not
optimal in the sense that the number of processors that are actively work-
ing on the list ranking problem decreases geometrically each round. Once a

10 Chapter 2. List Ranking and Parallel Tree Contraction

processor’s cell is jumped over it is free to do other work, until it is needed
during the reconstruction phase. However, scheduling these freed processors
with other work introduces overhead and in some Single Instruction Multiple
Data (SIMD) architectures these processors must remain idle.

In this section we introduce an approach to keep a fixed set of processors
busy most of the time. If we assume that each round takes O(1) time, then in
order to obtain an algorithm that takes O(logn) time and n/logn processors
we must remove O(n/logn) cells per round.

One approach would be to simulate Random Mate using n/logn pro-
cessors, by letting each processor do the work of logn virtual processors. We
assign each processor logn adjacent memory cells. Note that adjacent cells in
memory need not be adjacent cells in the linked list. Each processor assigns
the cells in its set a sex, and jumps over all males pointed to by a female.
However, a processor may be unlucky and have all its log n cells assigned fe-
male, each of which points to a male. Thus, the unlucky processor jumps over
other processors’ cells, but none of its own cells are eliminated. If this happens
repeatedly, we get an O((logn)?) algorithm. However, it is not unrealistic to
assume that prefix sum is a unit time operation [Ble90]. In this model it is
then possible to rebalance the work among the processors using prefix sum
operations, while maintaining a O(logn) running time.

Another approach is to think of a processor’s logn cells as a queue. A
processor looks only at the top of the queue in each round. During each
round of the list ranking algorithm, each processor attempts to jump over
the successor of the top of its queue. When the top of a queue is jumped
over, the processor moves to the next element, etc. However, we need to
prevent two processors from jumping over adjacent cells in the linked list to
avoid contention. Contention occurs when both ¢ and succ[i] are at the top of
queues. When several tops of queues are adjacent cells in the linked list, we
call the set of adjacent cells a chain. Cells of a chain cannot all be spliced out
in the same round. Again, contention can be avoided if, during each round,
each processor chooses independently and randomly a sex for the top of its
queue. If during the round, two adjacent cells are at the tops of queues, then
succli] is jumped over only if 7 is female and succ[d] is male. Since only cells
that are at the top of a queue are attempting to jump cells, we can assume
that all cells not at the top of a queue have a male sex. A given round is
shown in Figure 2.3. A solid arrow head indicates the top of the queue.

Unfortunately, this algorithm can also become imbalanced. If a large
number of tops of queues all point to queues of only a few processors, then

2.1 List Ranking 11

FIGURE 2.3

Random Mate using queues. Solid arrow heads indicate the top of the queues.

these few processors have most of their cells jumped over and have little work
to do, while the remaining processors have almost all the work to do. If
these same tops of queues again point to queues of another small number
of processors, then a few more processors have little work remaining to do.
Eventually a small number of processors would have all the remaining work to
do and a load balancing step would be required in order to keep the running
time down. Figure 2.4 illustrates how cells might be eliminated in this fashion,
leading to imbalanced queues. The problem here is that some processors may
be lucky and have many of their cells eliminated, either by themselves or by
the work of other processors. While other processors are unlucky and work on
eliminating other processors’ cells and only have a few of their own eliminated.

To avoid this imbalance we let each processor splice out the cells as-
signed to itself. We distinguish here between splicing out one’s own cell and
Jumping over a successor cell. A processor can splice its own cell if the linked
list is doubly linked, i.e., each cell, ¢, has a pointer to both its predecessor,
pred[i], and its successor, succ[i], and the successor of the tail of the linked
list and the predecessor of the head of the list point to nl. If we are splicing
out cell 7, we set pred[succ[i]] := pred[i] and succ[pred[i]] := succ[i]. As with
the previous algorithms the head of the list is never spliced out, and when the
tail of the list is spliced out the successor of the new tail points to nil.

EXERCISE 2.1

12 Chapter 2. List Ranking and Parallel Tree Contraction

N\

FIGURE 2.4

Imbalance caused by jumping over successor cells.

Show how, if the cells are singly linked, they can be doubly linked in
log n steps using n/logn processors on an EREW PRAM.

Again, each processor is assigned log n consecutive cells in memory and
treated as a queue, and the algorithm has two phases. During the first phase,
all cells are spliced out of the linked list. When all the processors have com-
pleted the first phase, the second phase starts. The cells are put back into
the linked list in the reverse order of their removal and the distance of the
cells from the tail of the list is computed. Code for the algorithm is given in
Algorithm 2.3.

The linked list is represented as a two-dimensional array, indexed by the
processor ID and position in the queue. We represent this index pair using
the infix operator at (@). For example the index pair 7@23 means the 237¢
element of processor 7’s queue. If ¢ is an index pair, we use 7.0 to indicate
the first element of the pair, namely the processor ID, and .1 to indicate
the second element of the index pair, namely the position of the processor’s
queue. Again we use ! to represent a processor’s ID. The variable top is an
index pair, where top[!] is the top of the queue for the current processor. We
process the queue by increasing positions. That is, top[!] is initialized to @1

2.1 List Ranking 13

and proceeds to @2, and so on.

A cell is spliced out only if it is a male pointed to by a female. Since
only males are spliced out, all cells not at the top can be assumed to be
female. During the splice out phase, each cell maintains a record of its original
distance, rank[i], from the cell to which it points, so that we may reverse the
first phase in order to compute the cell’s final rank. Initially, rank[i] :=
1 for all cells. If during a round ¢ is spliced out, then we add rank[i] to
rank[pred[i]]. During the reconstruction phase the rank of a cell is computed
in reverse order of removal. When ¢ is added back to the linked list the rank
is rank[i] := rank[i] + rank[succ[i]].

Analysis

THEOREM 2.2

Optimal_Random_Mate computes the rank of each element of a linked
list of length n in O(logn) time using n/logn processors on an EREW
PRAM.

PROOF

The probability that the top of a queue is removed during any given
round 1s at least %. To make the analysis easy, we assume that if a cell is
not adjacent to another cell at the top of a queue, 1t only has probability
of % of being removed. The number of items that are removed from a
queue after ¢ rounds can be viewed as a binomial random variable S¥ , p =
% (i.e., sum of ¢ independent Bernoulli trials with success probability
p). The expected time for a queue to become empty is at most 4 log n.
Chernoff [Ch52] shows that S is substantially less than its expected
value, pt, with small probability:

Prob[SY < (1 — B)pt] < e for0< B< 1

If we take p = %, t = 16logn, and 3 = 3/4, we have:

Prob[S? < logn] < e §1987 < 1/n

Thus, the probability that a particular queue 1s not empty after 16 logn
rounds is less than 1/n. Since there are n/logn queues, the probability
that there is a nonempty queue at time 16logn is less that 1/logn. It
follows that the expected runtime is O(logn). .

14 Chapter 2. List Ranking and Parallel Tree Contraction

ALGORITHM 2.3
An optimal randomaized list ranking algorithm

Procedure splice_out()
rank[pred[i]] := rank[pred[i]] + rank[i];
succ[pred[i]] := succli];
if succ[i] # nil then pred[succ[i]] := pred[i];
end splice_out

Procedure Optimal_Random_Mate

In Parallel do /* Initialize */

for : =!@1 to !@[logn] do
rank[i] := 1; sez[i] := F}

end for
top[!] :=1@1;

end in parallel

host set sex[nil] := M; t:=1;

In Parallel while succ[head] # nil do /* Pointer jumping phase */
if top[!].1 < [log n] then do
sex[top[!]] := Random{M, F};
if (sex[pred[top[!]]] = F and sex[top[!]] :== M) then do
splice_out(top[!]);
top[!]-1 := top[!].1 + 1; splicetime[top[!]] := ¢t;

end then
end then
t:=t+1;

end in parallel

In Parallel whilet >0 do /* Reconstruction phase */
top[!].1 := [log n];
if (splicetime[top[!]] = t and succ[top[!]] # nil) then do
rank[top[!]] := rank[top[!]] + rank[succ[top[!]]];
top[!].1 := top[!].1 — 1;
end then
t:=t—1;
end in parallel
end Optimal_Random_Mate

2.1 List Ranking 15

It is possible to improve the runtime of this algorithm by a constant
factor by splicing out elements from the linked list until there are n/logn
elements left. This takes just a little over 4logn rounds. Then using the
n/logn processors, the elements can be spliced out using Wyllie’s algorithm
in time O(logn). Finally, the linked list is reconstructed in the reverse order
the cells were splice out in the first phase. Reducing the problem to a smaller
linked list that can use Wyllie’s algorithm is a common approach to optimal
list ranking algorithms. That is, the steps are:

1. Reduce the problem to O(n/logn) elements.
Solve the list ranking problem on the reduced linked list with Wyl-
lie’s algorithm.

3. Fill in the ranks for the remaining elements.

2.1.5 An Optimal Deterministic List Ranking
Al%'orithm
t

In the previous algorithm, when the top cells of two processor queues
are adjacent in the linked list, we avoided attempting to splice out both top
cells simultaneously by randomly tossing a male/female coin. In this sec-
tion we use a variant of the deterministic coin tossing technique devised by
Cole and Vishkin for breaking symmetry in parallel algorithms. Unlike the
optimal CRCW PRAM list ranking algorithms presented in the next two
chapter, which use 2-ruling sets, the algorithm presented here only needs to
find loglog n-ruling sets to get an optimal O(logn) time n/logn processor
EREW PRAM algorithm. Finding loglog n-ruling sets is substantially sim-
pler than finding 2-ruling sets, which requires a complicated sorting step, and
hence much larger constants. In addition, the scheduling step of the algorithm
in this section is simple and has the advantage that cells are reallocated to
processors only once. With local memory architectures reallocation can add
sizable overhead to an algorithm. In this section we describe the basic deter-
ministic algorithm. In the next section we show how to find loglogn ruling
sets.

The basic idea of the deterministic algorithm is the same as with the
Optimal_Random_Mate algorithm of the previous section. Here we also assume
that we have n/logn processors, each originally assigned logn continuous
blocks of memory. The main difference between the two algorithms is that
here we find a k-ruling set (defined below) to resolve contention instead of
randomization.

16 Chapter 2. List Ranking and Parallel Tree Contraction

The algorithm consists of three phases: First, a deterministic list ranking
algorithm splices out items from the linked list until n/logn items remain.
At this point in the algorithm the linked list has been reduced to an n/logn
cell weighted linked list. Second, we use a prefix sum algorithm to assign one
pointer to each of the n/logn processors and then apply Wyllie’s algorithm
with one processor per list cell. Finally the rank of the cells are computed
by adding them back into the linked list in the reverse of the order that they
were removed.

Ruling Set and Graph Colorings

In this subsection we show how to find colors and ruling sets for linked
lists. They need not be doubly linked. We begin by defining the notion of a
k-ruling set, which is also defined in the next chapter. We treat a linked list
L as a directed graph. If V4, ..., V,, are the cells of L then we represent L as
the directed graph G = ({V1,...,V,}, E), where E is the set of edges {e;;}
such that V; is linked to V; in L.

DEFINITION

Let G = (V, E) be the directed graph representation of a linked list L
with vertices Vy,...,V,. We define a subset S of V to be a k-ruling
set if:

1. No two vertices in S are adjacent.
2. For each vertex V; in V there is a directed path from some
vertex in S to Vi with length at most k.

This definition implies that there are at most k vertices between any two
vertices in a k-ruling set. The kingdom of a vertex V; in S is the list of all
vertices in V' that lie between V; and the next vertex in S. The vertices in S
are called the rulers and the vertices between rulers are called the subjects.

ruler sbjct sbjet ruler ruler

ViaVoasVa=s...= Vis... =V, =0

kingdom

In the notation of the figure above, the vertices in the k-ruling set are marked
with ruler. Note that a kingdom has at least one subject (not including the
vertex in the ruling set) and at most &k subjects.

2.1 List Ranking 17

The notion of k-ruling set is similar to the concept of a graph coloring.
Let G = (V, E) be an undirected graph. A map C' : V = {0,...,k — 1} is
a k-coloring of G if (x,y) € F implies that C[z] # Cly]. We first observe
that given a k-coloring of the vertices, a 2k-ruling set can be obtained in unit
time using n processors. Then we show how to find a coloring for a linked list
when % is small.

Let C' be a k coloring of a linked list L. A 2k-ruling set is defined as
follows:

1. The head of the linked list, head, is a ruler.
2. FElement z is a ruler if pred[z] # head and C[pred[z]] > C[z] and
Clsueclz]] > Clz].

Observe that the head of the linked list can have the largest possible
kingdom. This happens when the the color of the head is greater than zero
and 1its subjects have colors 0,1,..., k—1,k—2,... 1, respectively. Note that
we get a slightly simpler construction if we assume that the head has color
zero. We have shown that the problem of constructing a 2k-ruling set can be
reduced to finding k-colorings.

EXERCISE 2.2
Show how to construct a k-ruling set from a k-coloring in constant time
using n EREW processors.

EXERCISE 2.3
Show how to define a notion of ruling sets for an arbitrary graph. Can
you get small kingdoms from a coloring using a small number of colors?

Small Colorings

We say that a coloring C' is an m-bit coloring if each color is written
as a length m binary string of zeros and ones. Let C' be a m-bit coloring of
our linked list L. For example, we could use the processor ID as the coloring,
where m = log P and P is the number of processors. We assume that head
has color zero, i.e, a bit string of m zeros. Since (' is a coloring there must
be some bit of Cz] which is not equal to the corresponding bit of C[pred|[«]].
Let B’[z] be the index of this differing bit and, for simplicity, let B’[«] be
the smallest such index. Thus, B’[x] is a number between 0 and m — 1 for
© # head. We write B’[#] in binary. Let B[z] = a - B’[z], where «a is the

18 Chapter 2. List Ranking and Parallel Tree Contraction

B'[z]™" bit of C[z] and - is concatenation. B[z] simply describes the first bit
of C[x] that differs from the corresponding bit of C[pred[z]]. A [logm]+ 1-bit

coloring €’ is obtained as follows:

cta-{ P11 ot pe o

EXERCISE 2.4

Show how to obtain a loglog n-bit coloring in constant time.

EXERCISE 2.5
Show that equation 2.1.1 also correctly colors rooted trees where head
is now the root.

EXERCISE 2.6
Show how to modify equation 2.1.1 to properly color bounded degree
graphs.

Deterministic List Ranking

As before, each of n/logn processors is assigned logn cells to remove.
When a cell 1s at the top of a queue and neither its successor nor its predecessor
are at the top of a queue, we call the cell an isolated cell. There is no
contention with isolated cells. The difficulty comes when the cell is part of
a chain of cells at the top of several queues. Before, we broke the symmetry
by flipping a male/female coin and spliced out a cell when it was a male to
which a female pointed. Otherwise the processor remained idle until the next
round. Here we break symmetry by using deterministic coin tossing to obtain
a loglog n ruling sets among the cells. Since a chain can have at most nlogn
cells and we have nlogn processors, we can use the results of the previous
section to obtain loglogn ruling sets in constant time.

Ruling sets divide a chain of cells into sublists where the head is the
ruler and the remaining cells are the subjects. The key idea is that the rulers
are assigned the task of splicing out all of their subjects. This means that
each processor that finds a subject at the top of its queue can assume that its
subject will be spliced out by another processor. Therefore, 1t can skip over
its subject by adjusting the top of the queue to the next cell in the queue.
In the next round, this processor can then continue working using its new
top. In the mean time, each ruler splices out one subject per round, for up to
loglog n rounds.

2.1 List Ranking 19

A processor stops working when, either its queue becomes empty, or it
has executed blogn rounds. As we show later, 5logn rounds is sufficient to
reduce the total number of cells remaining to at most n/logn cells. Once all
processors have stopped, then the remaining cells are allocated to the n/logn
processors, one cell each, and the processors proceed with Wyllie’s algorithm.
Finally, there is the reconstruction phase.

We give a more formal description of splice out phase of the algorithm
by giving the code that each processor executes in Algorithm 2.4. As before,
the queue for the processor is represented by an array, with fop pointing to the
cell at the top of the queue. The linked list 13 assumed to be doubly linked.
The subprocedure splice_out is the same as in the Optimal_Random_Mate al-
gorithm.

A cell can have the status {A, I, R, S} denoting active, inactive, ruler,
or subject, respectively. Initially, the top of each queue has status active and
all other cells have status inactive. At the beginning of each round the top of
a queue can either be active or a ruler.

If the top of a queue is active, the first step is to determine whether it
is part of a chain. If it is, it calls the subprocedure Find_Ruling_Sets, which
subdivides chains into short linked lists, linked by next, such that the heads
of the linked lists are rulers and the remaining cells are subjects. At this
point the top of a queue 1s either active, a subject or a ruler. Active cells do
not have adjacent cells that are active and, therefore, can splice themselves
out and advance the top of the queue to the next cell in the queue. Subjects
advance the queue top to the next cell in the queue since they will be spliced
out by their ruler.

Finally rulers splice out one of their subjects. Once a ruler has spliced
out all of its subjects it puts itself back into the active status, and in the
next round checks whether it is part of a new chain. Figure 2.5 shows an
example of the status of the elements of a linked list after one application of
Determanistic_List_Ranking.

EXERCISE 2.7
Can the three cases for if status... be run in parallel? If not, show
when parallel execution fails.

The correctness of the algorithm follows from the facts that adjacent
cells are never removed at the same time, and every cell is eventually looked
at by a processor. In the next section we discuss the scheduling which ensures
that the running time of the algorithm is O(logn).

20 Chapter 2. List Ranking and Parallel Tree Contraction

ALGORITHM 2.4
The splice out phase of an optimal determanistic list ranking algorithm

Procedure increment_top
top[!].1 := top[!].1+ 1;
if top[!].1 < log n then if pred[top[!]] = nil then
top[!].1 := top[!].1+ 1; /* Don’t splice out head of list */
if top[!].1 < log n then status[top[!]] := A;
end increment_top

Procedure Deterministic_List_Ranking

In Parallel do /* Initialize */

for i =1 to [logn] do
rank[!Qi] := 1; status[!@Qi] := [;

end for
top[!] :=!Q0; increment_top;

end in parallel

host set status[nil] := I;

In Parallel for t =1 to 6logn do
if top[!].1 < logn then do /* Subdivide chain */
if status[top[!]] = A and
(status[pred[top[l]]] = A or status[succ[top[!]]] = A) then
status[top[!]] := Find_Ruling_Sets(top[!]);

if status[top[!]] = A then do
splice_out(top[!]); /* Splice out isolated cell */
increment_top;

end then

if status[top[!]] = S then
increment_top; /* Advance top past subjects */

if status[top[!]] = R then do

splice_out(next{top[!]]); /* Splice out a subject */
if nest!] = nil then /* No more subjects */
status[top[!]] := A;
end then
end then

end Parallel for
end Deterministic_List_Ranking

2.1 List Ranking 21

FIGURE 2.5

Status of cells after one application of Deterministic_List_Ranking.

Scheduling

In order to keep all the processors busy we need to be sure that the
queues become empty at approximately the same time. Queues can become
imbalanced because the length of a queue is not reduced while its top is a ruler
removing subjects. The solution to this problem has two parts: we insure
that chains do not become too long by breaking them into loglogn ruling
sets, and we insure that rulers are assigned to shorter queues as opposed to
longer queues.

In section on small colorings we showed how to find loglogn ruling sets.
In this section we consider the second problem, that a long queue could be
assigned a ruler. A processor needs to splice out all of its subjects before
it can continue working on its own queue, which can lead to an imbalance
in queue lengths. We would like the processor with the smallest queue to
become a ruler. Therefore, we modify Find_Ruling_Sets to subdivide chain

22 Chapter 2. List Ranking and Parallel Tree Contraction

into ones that have either monotone increasing or monotone decreasing queue
lengths and then find loglogn ruling sets within the monotone chains. If a
ruling set has monotone decreasing queue lengths, we reverse the pointers in
constant time so that the chain is traversed backwards instead of forwards
to splice out elements. This allows rulers to have minimum height queues
and remove cells working uphill. Algorithm 2.5 shows the code for this modi-
fied version of Find_Ruling_Sets and its subprocedure Find_Increasing-Chains.
Recall that Dererministic_List_Ranking calls Find_Ruling_Sets with top[!] as
an argument, which is an index pair for two dimensional arrays. The code for
Find_Ruling_Sets uses the parameter ¢ for this index pair.

Find_Increasing_Chains subdivides each chain into subchains that are
monotone with respect to queue lengths; each subchain is linked through the
pointers next and the tails point to nil. For those parts of the chain that are
monotone increasing or strictly equal in queue length, next is the same as the
suce pointer. For parts that are strictly decreasing, next is the same as the
pred pointers. In this way, as one traverses these subchains along the next
pointers the queue lengths increase monotonically.

We use the boolean variable inchain to mark which cells are part of
a chain and which are singletons or inactive. Those cells that do not have
tnchain set to true are not in a chain. We initialize all next pointers to nal.
The boolean covered indicates whether we have determined to which subchain
the cell belongs and we initialize it to false. First we find subchains from
the parts of the chain that have monotone increasing queue lengths. Recall
that top[i.0].1 is the length of the queue i.0. The neat pointers are set in the
forward direction using the succ pointers. The local maxima are the tails of
the these subchains. We mark cells in these subchains, including the tails, as
covered. The remaining uncovered cells have strictly increasing queue lengths.
If a pair of cells are uncovered, the second cell in the pair sets its next pointer
to the pred so that the pointers go in the reverse direction. Notice that the
first or last cell in the original chain may become a singleton chain.

Find_Ruling_Sets takes these monotone chains and subdivides them into
2loglogn rulings sets. First it finds a loglogn colorings as shown in Section 2.
Then it breaks the chains at local minimum colorings, so that chains are at
most 2loglogn long. Finally it set the heads of the subchains as rulers and
the remaining cells as subjects. Any ruler that does not have a subject is
isolated from active cells so it too is set to active.

The effect of these modifications is to have the following two constraints
on rulers and their chain of subjects: a ruler never has more that 2loglogn

2.1 List Ranking 23

ALGORITHM 2.5
Algorithm to find chains with monotone increasing queue lengths

Procedure Find_Increasing-Chains(1)
In Parallel do

inchain[i] := true; next[i] := nil; covered[i] := false;
if succ[i] # nil then if inchain[succ[i]] then do
if top[i.0].1 < top[succ[i].0].1 then do
next[i] := succli]; /* Increasing or equal queue lengths */
covered[i] := covered[next[i]] := true;
end then
else /* Decreasing queue lengths */
if not (covered[i] or covered[pred[i]]) then
next[t] := pred[il; /* Reverse pointers */
end then
end in parallel
end Find_Increasing_Chains

Procedure Find_Ruling_Sets(1)
In Parallel do
Find_Increasing_Chains(1);
Find_Coloring(i);
/* Subdivide chains at local minima */
if nest(i] # nil then if next[nest(s]] # nil then
if (color[i] > color[next[i]] and
color[next[i]] < color[next[next[i]]]) then
next[i] := nil;
status[i] := R; /* Determine status */
if nest(i] # nil then status[nest[i]] := S;
if nest[i] = nil and status[i] = R then status[i]] = 4;
end in parallel
end Find_Ruling_Sets

24 Chapter 2. List Ranking and Parallel Tree Contraction

subjects, and the height of a ruler is no greater that the height of its subjects.
The performance analysis given in the next section shows that these conditions
are sufficient to make the list ranking algorithm an O(logn) algorithm.

There is one final detail. Because we have reversed the direction that
some rulers splice out their subjects, we can have two rulers that splice out
adjacent subjects. Therefore, we modify Deterministic_List_Ranking so that
when rulers splice out their subjects they use the subprocedure splice_Next
instead of splice_Out. The splice_Next algorithm, shown in Algorithm 2.6, is
written from the point of view of the ruler, who is actually doing the work
and lets rulers who have chains running forward to splice first, and then rulers
with backward chains to splice next.

ALGORITHM 2.6
A ruler splicing out its next subject

Procedure splice_Nezi(i);
In Parallel do
if next[i] = succ[i] then do /* Forward chains */
rank[i] := rank[i] + rank[succ[i]];
succli] := succ[succ[i]];
if succ[i] # nil then pred[succ[i]] := ¢;
end then
else do /* Backward chains */
rank[pred[pred[i]]] := rank[pred[pred[i]]] + rank[pred[i]];
pred[i] := pred[pred[i]];
succ[pred[i]] := 1;
end else
next[t] := nexit[next]i]];
end in parallel
end splice_Next

Analysis
In order to analyze the running time of these algorithms, we provide an
amortization scheme that assigns weights to the items for which a processor
is responsible. Then we show that after a given round the weight of the entire
system is reduced by a constant factor. In order to determine the efficiency of
this algorithm, we use the following accounting scheme. We think of a queue

2.1 List Ranking 25

as being stacked vertically, and the height of an element as its distance from
the bottom of the queue. We refer to the height of the queue as the number

of elements in the queue remaining to be processed. For a given processor

queue, each item 1s assigned a weight relative to its position in the queue.

The i-th item from the top of the queue is assigned weight (1 — a)?, where

a = 1/loglogn.

The weight change to the system is as follows:

the removal of an isolated item removes the item’s entire weight.
the removal of a subject removes half its weight.
the identification of a subject removes half its weight.

N R

the identification of a ruler removes nothing.

We show that each round reduces the total weight by a factor of at least 1— 7.
This rate of reduction allows us to bound the number of rounds required to

reduce the number of items remaining in the linked list to n/logn.

LEMMA 2.1

A single round of the algorithm reduces the weight by a factor of at least
1-2.
2

PROOF

To facilitate the argument, we use the following bookkeeping trick: the
weight of a processor’s queue is the sum of the weights of the remaining
items on the queue, plus one half the initial weights of any subjects for
which it is responsible. For example, in Figure 2.6, queue); has weight
l-—a)+(1—-a)P)+(1—-a)+ %(1 —a)? + %(1 — a)t, with the first
three terms coming from the items on queue); and the fourth and fifth

terms coming from the subjects on queues @J; and)} respectively.

The following facts are useful in the analysis that follows:

1. the number of queues is n/logn.
2. Initially, the weight of each queue is:

logn

d (1-a) < 2(1_ay’ =1/(1—(1—a)) = 1/a = loglogn.

i=0

26 Chapter 2. List Ranking and Parallel Tree Contraction

_/’

FIGURE 2.6
The weight of Q; is equal to the weight of the remaining items on the queue plus
half the weights of the subjects of the chain.

3. [Initially, the total weight of the system is:

< nloglogn.
logn

In each round of the algorithm a processor either 1) identifies the top
of the queue as an isolated cell, which it splices out, 2) identifies the
elements of a chain as either subjects or rulers, or 3) finds the top of its
queue is a ruler and splices out one subject. Thus, we divide the total
weight into three corresponding categories: 1) isolated active cells and
the inactive cells below them, 2) active cells in chains and the inactive
cells below them, and 3) rulers and inactive cells below them and sub-
jects, as shown in Figure 2.7. Every cell remaining in the system can be
placed in exactly one of these categories. We examine the rate at which
the weight is reduced for each case during one round of the algorithm,
and show that each case reduces the weight of its category by at least a

factor of 1 — ¢, and hence the total weight by at least a factor of 1 — .

Case 1. Removal of an isolated cell

2.1 List Ranking

27

FIGURE 2.7
Categories to which cells belong.

For each isolated cell, assume the weight of the cell is (1 — a)i.

Initially, the weight of the queue is

logn

Before = Z(l —a)’.

Jj=t

After the cell is removed the weight of the queue becomes

logn
After = Z (1— oz)j.
j=itl
After Before — (1 —)t
Before Before
[(i-ay
Before
< 1- (1-a)

28 Chapter 2. List Ranking and Parallel Tree Contraction

= l—«o

FIGURE 2.8

Removal of an isolated cell.

Case 2. ldentification of a Subject

We account for the weight of all of the queues associated with the
chain. The queues that have cells that become subjects lose one
cell each and the queue that has the ruler picks up the subject cells.
Cells that are identified as subjects lose half of their weight. When
identifying subjects, the weight of the ruler’s queue will reduce the
least when the ruler has only one subject and both the ruler and
the subject are at the same height, ¢. Initially, the weight of the
two queues is
logn
Before =2 Z(l —a)’.

Jj=t

2.1 List Ranking 29

After the cell is identified as a subject and half of its weight is
removed from system the weight of the two queues becomes

1 .
After = Before — 5(1 —a)

Therefore,
After] %(1 —)
Before Before
B %(1 —)
- 2(1 — a)id
o 4
—_—
| > |
>
FIGURE 2.9

Identification of a subject.

Case 3. Removal of a Subject

When a subject is removed only the weight of the ruler’s queue
changes. Recall that in our chains, the ruler has the shortest queue.

30

Chapter 2. List Ranking and Parallel Tree Contraction

For the purpose of the analysis, we can think of a ruler as splicing
out the subject with greatest height first. In this way, the weight
changes the least when the ruler has the maximum number of sub-
jects, loglogn, and each subject is at the same height as the ruler.
Initially, the weight of the ruler i1s the weight of the ruler’s queue
plus the weight of the loglogn subjects:
logn 1

B = 1—a)) + - loglogn(l —a)'.
efore Z(a) + 5 log ogn(l —a)

Jj=t

Afterward, half of the initial weight of a subject is removed from
system, and the weight of the two queues becomes

1 .
After = Before — 5(1 —a).

Therefore,
After 1 %(1 —a)’
- - logn ; g
Before Zj:gi (1—a) + %loglogn(l—a)
1 i

Hence, as long as the queues are not empty every queue 1s reduced
by a factor of at least (1 — §).

THEOREM 2.3

The number of list cells remaining after 6logn applications of Deter-
ministic_List_Ranking is at most n/logn.

PROOF

2.1 List Ranking 31

i s] o % ges
- | T > i -
L > > | L | g > |
FIGURE 2.10
Removal of a subject.
First we show
logn
a> (1 - 3) . (2.1.2)
4
For sufficiently large n
logn > 4(loglogn)?
> 4loglogn -logloglogn
4
= —logloglogn.
et
Thus,
et
logloglogn < 1 logn.
Exponentiating both sides:
loglogn < e '°8™, (2.1.3)

Taking reciprocols and using the facts that limg_q (1 — a/4)1/a = 1/4

and (1 — a/4)1/a is monotone decreasing:

32 Chapter 2. List Ranking and Parallel Tree Contraction

a > e—%oclogn

0-9"7"
-3

Recall by the facts given at the previous lemma that the total weight

\%

n
logn

of the system is less than % Since the total weight is reduced by a

factor of at least (1 — %), the weight after 6 logn rounds is at most

n 1 (1 B g)6logn < n (1_ E)Exlogn

logn o 4 logn 4
< n 1 o n 5a? 5ad logn
log n YT TS T3
1— logn.
< logn(@)

Since there are n/logn queues and the smallest weight of an item is
(1—a)°8™ there are at most n/ logn cells remaining after 6 log n rounds.

We have shown that by using n/logn processors we can reduce a linked
list of size n to one of size n/ logn in O(log n) time. Now we can apply Wyllie’s
algorithm to reduce the linked list to a single cell. Therefore, this algorithm
1s optimal up to a constant factor.

EXERCISE 2.8

Show that if a chain is strictly increasing in queue size, then it is not
necessary to find loglogn ruling sets. Write an algorithm taking advan-
tage of this observation. Note: it is still necessary to find loglog n ruling
sets for chains that have constant size queues.

EXERCISE 2.9

By adjusting how much identifying a subject reduces a queue’s weight
and refining the analysis in Theorem 2.3, show that only 4logn rounds
are necessary to reduce the number of list cells to at most n/logn.

2.2 Parallel Tree Contraction 33

Conclusion

In this section we introduced a number of list ranking algorithms. The sim-
plest and, probably the most practical, is an algorithm due to Wyllie. Tt is
not optimal, with respect to the work done, but has very small constants.
The next algorithm, Random Mate, introduced randomization to resolve con-
tention. This algorithm is also very simple and, although optimal with respect
to the work done, still requires n processors. The Optimal Random Mate al-
gorithm reduces the number of processors needed to n/logn by providing
a simple scheduling scheme in addition to randomization. Finally, we gave
an optimal deterministic list ranking algorithm that is quite simple relative
to other deterministic algorithms in the literature. The randomization algo-
rithms tend to have much smaller constants than deterministic algorithms.
However, on some architectures getting the random bits to the processors fast
enough may limit their practicality.

TABLE 2.1
Time and processor count for the list ranking algorithms discussed in this
section.

Problem Time Processors | Work

Wiyllie’s algorithm O(logn) | n O(nlogn)

random mate O(logn) | n O(n)

optimal random mate O(logn) | n/logn O(n)

optimal deterministic algorithm | O(logn) | n/logn O(n)

2.2
Parallel Tree Contraction

2.2.1 Top Down verses Bottom Up Tree
Algorithms

Trees play a fundamental role in many computations, both for sequential
as well as parallel problems. For sequential algorithms the classic paradigms
for trees are depth-first-search and breadth-first-search. However, for pro-
cessor efficient parallel algorithms, depth-first-search and breadth-first-search
have not appeared to be successful in general. Typically, parallel algorithms
involving trees use either divide and conquer or parallel tree contraction. Di-
vide and conquer is a “top-down” approach, where first one finds a vertex

34 Chapter 2. List Ranking and Parallel Tree Contraction

that separates the tree into two subtrees roughly the same size, and recur-
sively solves the two subproblems. A now classic example is Brent’s work of
parallel evaluation of arithmetic expressions [Bre74]. In this case one sub-
tree is a proper expression tree, which can fully determine its value, while

the other subtree has a “scar”, where 1t has to wait for the value of the first

subtree before it can finish computing its own value. The main problem with
the divide and conquer approach is finding the separators that separate the
tree into components with size not more than 2/3 of the original size. If we
require that we find the separators on-line, that is no preprocessing is allowed,
then finding the separators seems to add a factor of logn to the running time
of most algorithms. The second approach is to use parallel tree contraction,
which is a technique for constructing parallel algorithms on trees working from
the bottom up. That is, all modifications to the tree are done locally. This
“bottom-up” approach, which is called CONTRACT has two major advantages
over the top-down approach: (1) the control structure is straightforward and
easier to implement, facilitating new algorithms using fewer processors and
less time; (2) problems for which it was too difficult or too complicated to find
polylog parallel algorithms are now easy. It has already been applied to find-
ing small separators for planar graphs in parallel [Mil86] as well as numerous
other applications [MR90].

We start by introducing the basic parallel tree contraction paradigm and
show that it takes O(logn) contractions to reduce a tree to its root. Processors
assigned to each vertex in the tree work on the tree from the bottom up.
During each contraction, they process the leaves in parallel and then removes
them from the tree, creating new leaves that are processed at the next round.
Removing leaves is called the RAKE operation. Clearly, removing leaves is not
sufficient for a fast algorithm; a tree that is a simple list would take a linear
number of rounds to reduce the tree to a point. Thus, a second operation
is introduced, called COMPRESS that reduces a chain of vertices, each with a
single child, to a chain of half the length. Like list ranking, COMPRESS uses
pointer jumping. Since RAKE and COMPRESS work on different parts of the
tree, they can be run simultaneously. As the algorithm is running, the RAKE
operation tends to produce chains that the COMPRESS operation then reduces.
Thus, enough processor are kept busy to make the algorithm run quickly. The
advantage of this approach to tree based parallel algorithm design is that the
processing of leaves can be designed separately from the processing of the
internal nodes with single children, simplifying the algorithms.

2.2 Parallel Tree Contraction 35

Initially we restrict ourselves to trees with bounded degree and consider
the changes necessary for unbounded degrees at the end. First we describe
the abstract parallel tree contraction paradigm and then we give the basic
form of the implementation on a CRCW PRAM. As an example of its use, we
implement arithmetic expressions evaluation. However, the algorithm is not
optimal, in that it uses O(logn) time and n processors, and uses concurrent
reads and writes. As with list ranking, we can reduce the number of processors
to n/logn by using randomization. But unlike list ranking, it seems that a
complicated load balancing step 1s also required. Therefore, we do not show
it here.

When the tree is restricted to being binary there is a simple optimal
EREW PRAM algorithm, which we present next. Each RAKE operation is
immediately followed by a COMPRESS operation so that chains never form.
The trick is to work on alternate leaves so that processors do not interfere
with each other. Determining which leaves to work on is made easy using
prefix-sums.

Next we present an optimal EREW PRAM algorithm for any bounded-
degree tree structure. It consists of two stages. The first stage subdivides the
tree into subtrees and assigns each subtree to a processor. A processor then
reduces its subtree to a single vertex. In this way P processors reduce a tree
of size n to one of size P in O(n/P) time. The second stage contracts the tree
of size P to its root in O(log P) time. Since the size of tree has been reduced
by the first stage, a processor can be assigned a single vertex; thus the second
stage of the algorithm in and of itself need not be optimal. The trick is to
ensure that no concurrent reads or writes take place.

Finally, we consider the modifications required by the basic and optimal
tree contractions algorithms when the tree has unbounded degree. For the
nonoptimal contraction algorithms the concern is that the RAKE operation
may not be constant time, but depends on the number of children of a node,
which is unbounded. For the optimal contraction algorithm, the assignment
of subtrees in the first stage needs to be modified so that no processor gets
an unbounded number.

In order to simplify the code, we stop using the ! mnotation in this
section and use the index v to refer to a vertex of the tree. We leave it to the
implementor to modify the code to handle the indexing by each processor.

2.2.2 The RakE and CoMPREss Operations

36 Chapter 2. List Ranking and Parallel Tree Contraction

In this section we introduce two abstract parallel tree contraction oper-
ations RAKE and COMPRESS, and note how they reduce the size of a tree. We
then show that if both operations are applied O(logn) times to a tree, the
tree reduces to a point. In the next section we give a suboptimal deterministic
CRCW PRAM implementation using O(logn) time and O(n) processors.

Let T = (V, E) be a rooted tree with n vertices and root . In order to
describe the RAKE and COMPRESS operations, we first introduce the definition
of a chain.

DEFINITION

Let vy, ...v, be vertices of a rooted tree. Then vy,...,vg is chain of

length k if:

® viy1, is only child of v; 1 <i <k, and
e v, has only 1 child and it 1s not a leaf.

A chain s maximal if it is not possible to add more vertices to the
chain.

We now define RAKE and COMPRESS and introduce a new operation,
CONTRACT.

RAKE: Let RAKE be the operation that removes all leaves from 7. An
example of a single RAKE operation is shown in Figure 2.11. It is easy to see
that if the tree is highly imbalanced, for example a simple linked list, RAKE
would need to be applied a linear number of times in order to reduce T to a
single vertex. We can circumvent this problem by adding one more operation.

COMPRESS: In one parallel step, we compress all chains by identifying
v; with w41 for ¢ odd and 1 < 7 < k, whenever vy ...v; is a chain. Thus,
the chain vy, ..., vy is replaced with a chain v}, ..., v’k/z]. Let COMPRESS be
the operation on 71" which “compresses” all maximal chains of 7" in one step.
Observe that a maximal chain of length one is not affected by COMPRESS. An
example of the COMPRESS operation is shown in Figure 2.12.

CONTRACT: Let CONTRACT be the simultaneous application of RAKE
and COMPRESS to the entire tree. We next show that the CONTRACT oper-
ation needs only be executed O(logn) times to reduce T to its root. In
particular, we show:

4
|ConTRACT (T)] < 3|T|

2.2 Parallel Tree Contraction 37

O/O\/O\
¢ R
/Q\ O O

o O

FIGURE 2.11
Result of a single RAKE operation. The shaded nodes of the tree on the left are the
nodes that are deleted in order to obtain the tree on the right.

—

THEOREM 2.4

After [log5/4 n] applications of CONTRACT to a tree with n vertices, the
tree 1s reduced to its root.

PROOF

We partition the vertices of 7' into two sets Ra and Com such that
| Ra| decreases by a factor of 4/5 after an execution of RAKE and |Com|
decreases by a factor of 1/2 after COMPRESS.

Let

Vo be the set of leaf nodes of T
Vi be the set of nodes with 1 child.
V5 be the set of nodes with with 2 or more children.

Next, we subdivide V; into:

Co={veVy|vschildisin Vp}.
Cy={veVy|vschildisin V;}.
Cy={veVy|vschildisin Va}.

38 Chapter 2. List Ranking and Parallel Tree Contraction

e Q

Q;Q\ O/Q\O

FIGURE 2.12
Result of a single COMPRESS operation. The shaded nodes represent the nodes that
replace the pairs of nodes in the tree on the left.

Finally, we consider a subset of C7:

GCy = {v € Cy | v's grandchild is in V;}.

All vertices in V) except those of Cy belong to a chain, by definition
of a chain. In order for Com to decrease by a constant factor after
each COMPRESS, we want to exclude chains of length one. Notice, for
example, in Figure 2.13 all the chains are of length one and COMPRESS
does not remove any vertex. These chains consists of a vertex in either
Cy or in GCYy. Therefore, we exclude C5 and GCy from C'om. We put
all the remaining vertices in Ra.

Thus, let

Com:Vl—Co—Cz—GCozCl—GCo
RGIV—COmIVQUVQUCQUCQUGCQ

2.2 Parallel Tree Contraction 39

N

=

O OO0 O

FIGURE 2.13

Vertex classes of a tree.

In this way, every vertex of C'om belongs to some maximal chain. Be-
cause we have excluded Cy and GCy from Com, if vy, ..., v; are the
vertices of a maximal chain then vy,...,vx_1 are the only elements in
the chain belonging to C'om. Thus, the number of elements in C'om
decreases by at least a factor of 1/2 after COMPRESS.

A RAKE operation removes all vertices in V. To see that the size of
Ra decreases by a factor of 1/5 after each RAKE we show that |Ra| <
5|Vo|. But this inequality follows by observing the following inequalities:
|Col < [Vol, |GCo| < [V, and [Ca] < [Va] < [Vol. .

2.2.3 The Basic Tree Contraction Algorithm

In this section we describe in more detail a CRCW PRAM implementa-
tion of CONTRACT. This basic algorithm requires O(n) processors to achieve
O(logn) time. For now we assume that the trees are of bounded degree.
The analysis of parallel tree contraction on trees of unbounded degree is in

40 Chapter 2. List Ranking and Parallel Tree Contraction

Section 2.2.6. First we describe a particular application, namely expression
evaluation in more detail. Next we show that by reversing the contraction
algorithm we can expand the tree back to its original structure and in the
process compute results for every vertex, not just the root. Thus, we use the
same resource bounds to compute over all subtrees as to compute over the
tree as a whole. This result is a natural generalization of parallel prefix eval-
uation [LF80, Fic83, Vis84]. Finally, we give several applications and their
implementations.

There are many useful applications of parallel tree contraction and ex-
pansion. For each given application, we associate a certain procedure with
each RAKE and COMPRESS operation, which we assume can be computed in
parallel in constant time. We denote applying these procedures on a vertex
v by rake(v) and compress(v). Typically the vertices of the tree T' contain
variables storing information relevant to the given application. The rake and
compress procedures modify these variables while the overall CONTRACT pro-
cedure modifies the tree structure itself.

Let T be a rooted tree with vertex set V =, |V| = n, and root r € V.
We view each vertex that i1s not a leaf as a function to be computed. The chil-
dren of the vertex supply all the information needed to compute its function.
Initially, only children that are leaves can supply the necessary information
to their parents. We first need to consider how a vertex determines whether
it is a leaf vertex, which can evaluate its function, or it is a vertex with only
one missing argument and potentially part of a chain. The approach is to
have those vertices that have computed their values tell their parents they are
done. In particular, these vertices mark a space reserved for them by their
parents. The parents need only check whether all or all except one child have
marked their spaces in order to determine if they are now leaves or part of a
chain.

In order to reserve space at the parent for each child, we need to assume
that the tree is ordered so that for each vertex v the children of v are ordered
v1,...,vx and each child knows its index. That is, let index[v;] be the index
of v; in this ordering of children, i.e., index[v;] = i. For each vertex v we set
aside k locations label[v,i],i = 1,... k in shared memory that the children
can mark. Initially each label[v,] is empty or unmarked. Let Arg(v) compute
the number of unmarked labels for v. Thus, initially Arg(v) = k, the number
of children of v. When the function at v; can be computed, indicated by
Arg(v;) = 0, we apply the rake procedure and mark label[v,i], which we
denote by mark(label[v,7]). Let P[v] be the vertex that is the sole parent of

2.2 Parallel Tree Contraction 41

v. When a vertex v and its parent P[v] have only one unevaluated argument,
then v and P[v] are members of a chain. The compress procedure is applied
to v, and P[v] is jumped over, i.e., P[v] = P[P[v]]. Algorithm 2.7 shows the
Basic_Contract procedure.

ALGORITHM 2.7
The Basic Contract Phase

Procedure Basic_Contract
In Parallel nitialize(v)
In Parallel while Arg (root) > 0 do
if P[v] # nsl then do
Parallel Case Arg (v) equals

0) rake (v); /* RAKE */
mark (label[P[v], index[v]]);
Plv] := nil;

1) If Arg (P[v])=1 then /* CoMPRESS */

compress (v);
Plo] = PIP[]);
end case
end then
end in parallel
host set rake (root);
end Basic_Contract

The algorithm is equivalent to one application of CONTRACT if one notes
that case 0 is RAKE and case 1 is COMPRESS.

THEOREM 2.5

After O(log4/3 n) applications to a tree with n vertices, Basic_Contract
reduces the tree to its root. If RAKE and COMPRESS take O(1) time then
the time to reduce a tree to its root is O(logn).

PROOF

Observe that after Basic_Contract every maximal chain decomposes into
two chains, one essential chain corresponding to COMPRESS and an un-
necessary chain that is out of phase. The head of this second chain
is unevaluated. For the purpose of analysis we can discard the second
chain, since i1t will never be evaluated.

42 Chapter 2. List Ranking and Parallel Tree Contraction

Note that Basic_Contractis slightly faster than CONTRACT, since it does
not test if the only child of a vertex is a leaf or not. Thus, some pointer
Jjumping occurs in Basic_Contract that does not occur in CONTRACT.
That 1s, chains in Basic_Contract contain all V; vertices, including Cj
vertices. Therefore, C'om for Basic_Contract can also contain GCjy ver-
tices and still reduce the size of C'om by at least 1/2 after every phase.
Since Ra does not contain GCy vertices, the number of vertices in of Ra
reduces by at least a factor of 1/4 after every phase of Basic_Contract.
Thus, after O(log4/3 n) applications of Basic_Contract to a tree with n
vertices, Basic_Contract reduces the tree to its root. .

Expression Tree Evaluation

More intuition can be gained by seeing Basic_Contract applied to ex-
pression evaluation over {4, x}. Let T be a binary expression tree in which
the internal nodes hold the operators and the leaves hold the operands. The
value of a leaf 1s the constant assigned to it. The value of an internal node is
defined recursively as the operation at that node applied to the value of its
children.

For reasons that will become clear later, we modify the definition of an
expression tree so that associated with each edge (v, P[v]) is a function, f,, in
one variable. For expression trees over {4, x }, these functions would be linear
forms, a X + b where X 1s an indeterminant and a and b would be constants.
The value of leaf remains the value initially assigned to it. If v is an internal
node with left and right children L and R and operation ©, then the value of
an internal node 1s

val(v) = fr(val(L)) ©y fr(val(R)),

where fr and fg are the unary functions for edges (L,v) and (R, v), respec-
tively. Initially, the function on every edge is simply the identity function, so
that every vertex of this modified expression tree has the same value as the
original expression tree. We can think of fr(val(L)) as the contribution of L
to 1ts parent’s value. Let rake correspond to computing a vertex’s value and
mark to computing its contribution to its parent.

Next, let us consider the COMPRESS operation. After every application
of COMPRESS we want an expression tree in which the value of every vertex
in the current tree is the same as the value of the same vertex in the original
tree. Suppose Arg(v) = Arg(L) = 1. In particular, suppose the value of R has

2.2 Parallel Tree Contraction 43

been computed but L is still missing one argument. Figure 2.14 depicts this
situation. During the COMPRESS operation L pointer jumps over v and points
to P[v], the parent of v. However, we want to be sure that P[v] computes
the same value after the COMPRESS operation as before. Let C), represent the
contribution of v to the value of P[v] and Cg represent the contribution of R
to the value of v. Since val(R) is known, Cg is also known and is a constant.
Let

val(v) = fr(X) ©y Cr = fo (X). (2.2.4)

Thus, val(v) is a linear form in X, which we denote by fq (X).

FIGURE 2.14
COMPRESS on an expression tree. The dotted nodes represent nodes that have been
removed.

But then €, is the composition of the two linear forms f, and f. This
composition is also a linear form. Let f; denote this linear form. That is,

Cy = fo(val(v)) = fo(fo (X)) = [L(X)

Therefore, after pointer jumping, the correct function on the edge from vy, to
P[v] is fr. Observe that the contribution of L to P[v] after the COMPRESS
operation is the same as the contribution of v to P[v] before the COMPRESS
operation. This observation motivates the use of the modified expression tree.
Figure 2.14 depicts the case in which the function of an edge depends only
on the value of a node and its children. In general, however, the function
value may be a composition of the operations of all the nodes that have been
jumped over on the path between a node and its new parent.

Given this information, we now consider an implementation for expres-
sion evaluation over {+, x}. Algorithm 2.8 gives the implementation, and

44 Chapter 2. List Ranking and Parallel Tree Contraction

Figure 2.15 shows the initialization and two applications of this implementa-
tion on an expression tree. Initially, the operands of the expression tree at
the leaves are stored in wval and the operators at internal vertices are stored
in op. Every vertex keeps a pointer to its parent, an index side indicating
whether it is a left or right child of its parent, and an index sib of its sibling.
Since the functions on an edge (v, P[v]) is a linear form aX + b, we associate
with each vertex v a pair of numbers (a, b) that represent the linear function
a[v]X +b[v]. The linear form at the root is irrelevant. Initially the linear func-
tion is simply X. We also set aside storage for the value of the vertex, val[v],
and the contributions of its left and right children, label[v, L] and label[v, R].
The children supply the values for label. We use the function eval to evalu-
ate the value of a vertex, given its operator and the contributions of its left
and right children. We use the function simplify to find the new linear form
for v, given (a,b) of itself and its parent, the operator of its parent, and the
contribution of its sibling. The contribution of the sibling of v is stored in
label[P[v], sib[v]]. That is, simplify finds the new linear form f; (X).

We used the more conservative definition of a chain in CONTRACT since,
for some applications, a vertex with a leaf as a child can use the time at this
stage to incorporate the value of the child in its own value rather than pointer
jumping. That is, in some implementations; it may be preferable to have
the RAKE operation not only compute the value of a leaf vertex, but also
do some computation at the parent given that the value of a child is now
known. For example, in expression tree evaluation, evaluating a vertex is a
simple, fast process. Once the value of the vertex is known the parent can
partially evaluate its vertex, i.e., to find fg(X) in equation 2.2.4. Thus, the
simplify function 1s divided into two parts: one part is the partial evaluation
of a vertex done by the processors performing the rake procedure, and the
other part that composes two linear forms and returns a linear form, done by
the processors performing the contract procedure. In this way, the rake and
compress procedures may be better balanced in terms of the time it takes to
complete the two subprocedures.

All Subexpression Evaluation

Note that many vertices are not evaluated. That is, for many vertices
v the value Arg(v) is never set to 0 during any stage of Basic_Contract. We
define a new procedure Basic_Frpand that allows the evaluation of all ver-
tices, 1.e., each vertex eventually has all its arguments after completion of the
procedure. We modify Basic_Contract so that each vertex keeps a push-down

2.2 Parallel Tree Contraction 45

ALGORITHM 2.8
Ezpression Fvaluation Contraction Phase

Procedure Ezpression_Contraction:

In Parallel do /* Initialize */
if Arg(v) = 0 then do /* Leaves */
label[P[v], side[v]] := val[v];
Plv] := nil;
end then
else (a,b)[v] := (1,0); /* Internal vertices */

end in parallel

In Parallel while Arg (root) >0 do
if P[v] # nil then do

Parallel Case Arg (v) equals

0) wal[v] := eval (op[v], label[v, L], label[v, R)]) /* Rake */
label[P[v], side[v]] := a[v] * val[v] + b[v]; /* Mark */
Plv] := nil;

1) if Arg(P[v]) =1 then /* Compress */

(a,b)[v] := simplify ((a,b)[v], (a,b)[P[v]], op[P[v]], label[P[v], sib[v]]);
Plv] == P[P[];
end case

end then
end in parallel

host set wal[root] := eval (op[root], label[root, L], label[root, R]);
end FEzpression_Contraction

46 Chapter 2. List Ranking and Parallel Tree Contraction

o K/
O
o o

O O

FIGURE 2.15

Initialization and two applications of Fapression_Contraction. Vertices with heavy
lines are working to generate the next version of the tree. Dotted vertices have been
raked. The solid arcs show the linear forms for the child vertices. The dotted arcs

show the labels sent to the parent vertices.

2.2 Parallel Tree Contraction 47

store parentStore, of all the previous values of P[v] and add a line before the
start of the Parallel Case statement of Basic_Contract:
Push P[v] onto parentStore[v];

We also include a counter ¢, which counts the number of iterations required
to contract the tree to its root.

We now apply Basic_Contract, which computes the value of the root r,
followed by Basic_Ezpand, given in Algorithm 2.9, which computes the value
of all vertices. At each iteration, we reintroduce vertices that were either
raked or were jumped over in the corresponding iteration of Basic_Contract.
We expand the tree for ¢ iterations to reconstruct the whole tree.

THEOREM 2.6

At the completion of Basic_Fxpand all vertices have their arguments.
PROOF

As in the proof of Theorem 2.5 we can discard those chains where the
leaves are unevaluated and consider only essential chains. The proofis by
induction on the trees with only essential chains, starting from the trivial
tree consisting of a singleton vertex r and finishing with the original tree
T. Let {r} =Ty, ..., T = T. The structure of these trees correspond one
to one with the trees defined during the tree contraction, but in reverse
order. Assume that at end of the i** application of Basic_Ezpand tree
T; has all its vertices evaluated. The vertices added to T;11 are either
leaves that were evaluated by a rake, or vertices that were jumped over
by compress during the corresponding contraction phase. Thus, every
new vertex in Tiyq is either a leaf, in which case we know its value,
or is missing one argument, the value of a vertex in 7;, which is also
known. In the latter case the value of the reintroduced vertex can then
be computed. .

THEOREM 2.7

At most [log 5/4 n)| applications of basic tree contraction and [log 5/4 n]
applications of basic tree expansion are needed to evaluate all the vertices.

In the implementation, we need to be able to distinguish between vertices
on essential chains that can compute their value, and vertices not on essential

48 Chapter 2. List Ranking and Parallel Tree Contraction

chains. We use the boolean value done, which indicates the vertices in 7; when
we are currently generating 7T;41. Initially only the root is in Ty. By popping
P[v] from the stack at each round, we get the structure of the tree during
the corresponding contraction phase. We use the difference in the structure
of the new tree from the old tree to note vertices reintroduced. Whenever the
parent of a vertex changes either the vertex was a leaf that was raked or it
spliced out its parent in the corresponding contraction phase. In the former
case, leaves introduced are vertices that previously had been removed from
the tree and now are connected to their parents. These leaves are “unraked”
and set as done. In the latter case, those vertices that are already done are on
an essential chain and can mark their new parents, which are the nodes being
reintroduced this round. These parents are nodes that are not done and have
zero missing arguments. Because these parents have just been marked, they
can evaluate themselves using uncompress and set themselves done.

Consider expression evaluation over {4+, x} as an example. When a
vertex 1s raked it knows its final value, so unrake does nothing. In order to
mark a parent, we need to send the contribution of the vertex to its parent. To
compute the contribution, we need to know the linear form of the vertex prior
to 1t splicing out its parent during the corresponding contraction phase. We
therefore need to modify compress in Ezpression_Contract to save its linear
form on a stack. We call this stack enwvirStore. We get the old value of the
linear form by popping the stack and then computing the contribution to its
parent. Finally, vertices that now have all their arguments can compute their
own values, using the contributions of their children. Algorithm 2.10 shows
the code for the expansion phase of expression evaluation.

EXERCISE 2.10

Show the expansion phase for the expression tree in Figure 2.15.

Applications of Tree Contraction

Expression Evaluation Let T be a tree with vertex set V' and root r. We
assume each leaf is initially assigned a constant from the domain D, and each
internal vertex v, with children uq, ..., us, has an operator on D of the form
®(uy,...,u;). To apply parallel tree contraction to an expression problem
seems to require finding a general form for implementing and storing the
composition of unary functions. A function of the form f : D — D is a unary
function over the domain D. The following two closure properties of unary
function classes are important to using parallel tree contraction[MT87].

2.2 Parallel Tree Contraction 49

ALGORITHM 2.9
The Basic Erpansion Phase

Procedure Basic_Expand:
In Parallel done[v] := false; /* Initialize */

Host set done[root] := true;

In Parallel for::=1to ¢t do
if not empty(parentStore[v]) then do /* Get new parent */
oldP[v] := P[uv];
Plv] := Pop(parentStore[v]);

if P[v] # oldP[v] then
if 0ld P[v] = nil then do /* Leaf reintroduced */

unrake (v);

done[v] := true;
end then
else if done[v] then /* Child of spliced node */

mark (label[P[v], index[v]);

if not (done[v] and
Arg(v) = 0) then do /* Spliced node reintroduced */

uncompress (v);

done[v] := true;

end then

end then
end in parallel
end Basic_Ezpand

50 Chapter 2. List Ranking and Parallel Tree Contraction

ALGORITHM 2.10
The expansion phase for expression evaluation

Procedure Ezpression_Expand:
In Parallel done[v] := false;
Host set done[root] := true;

In Parallel for::=1 to ¢t do

if not empty(parentStore[v1]) then do /* Get new parent */

oldP[v] := P[uv];
Plv] := Pop(parentStore[v]);

if P[v] # oldP[v] then do
if oldP[v] = nil then

done[v] := true; /* leaf reintroduced */

else if donef[v] then do /* child of node reintroduced */

(a,b)[v] := Pop(envirStore[v));
label[P[v], side[v]] := a[v] * val[v] + blv];
end then
end then

if not (done[v] and

Arg (v) = 0) then do /* spliced node reintroduced */

val[v] := eval (op[v], labellv, L], label[v, R]);
done[v] := true;

end then

end then
end in parallel
end Ezpression_Expand

/* uncompress */

2.2 Parallel Tree Contraction 51

DEFINITION

(Composition) 4 unary function class F is closed under composi-

tion if, foradl i, h €F, o i €F.

DEFINITION

(Projection) A unary function class F is closed under projection
of for all operators @, for all ay,...,ar €D, and for all 1,1 <1< k:

(a1, ..o, a1, &, 041, ..., a5) € F.

Consider, for example, arithmetic expression trees over the reals with
operators ® € {+,—, x,+}. The operations {+, —, x, =} have their usual
interpretations e.g., a/b + ¢/d = (ad + bc)/bd. We assume that the number
of arguments at a vertex is at most 2. If not, we assume that in O(logn)
time we can convert it into such a tree. In order to perform compress we need
a representation for unary functions that is closed under projection and is
closed under composition. Consider F, the ratio of a pair of linear functions
of the form (az + b)/(cx + d). The values stored or manipulated are sums,
products, and differences of the initial leaf values val(v). The function is
the ratio of these elements. F is closed under composition, because for all

fx) = (ax + b)/(ce +d) and f'(z) = (d'z+ b)) /(e +d)

Fof a'(ax +b)/(ce +d)+ b dx4+b"
¢ = =
a4+ b)/(cx +d)+d e+ d"

F is closed under projection, because +(a,z) = +(x,a) = z + a, —(a,)
—x+4a, —(z,a) =r—a, x(a,z) = x(x,a) = ax, +(a,x) = a/z, and =(z,a) =

z/a.

EXERCISE 2.11

Find the maximum independent set of a tree. (Hint: Show that a greedy
algorithm is sufficient.) Show how this problem is equivalent to evalu-
ating an expression tree.

EXERCISE 2.12

Find the minimum number of registers needed to evaluate an expression
tree. (Hint: Find the equivalent expression tree and find a function class
closed under projection and composition.)

52 Chapter 2. List Ranking and Parallel Tree Contraction

EXERCISE 2.13
Compute the heighjt of each vertex in a tree, where height(v) is the
length of the longest path from v to a leaf of the tree.

Ancestors’ Maximum Value Given a tree with values at each vertex, for
each vertex find the maximum value of the ancestors of that vertex.

This problem is slightly different form the ones we considered before
because the information needed to compute the maximums comes from the
ancestors, not the descendants, of the vertex. That is, the information needs
to flow down the tree not up. Thus, rake cannot contribute to the solution.
But unrake does, by using the information filtered down to its parent.

Solution: We use parallel tree contraction with the following operations:
Initialize: max[v] := value[P[v]]

Rake: /* null operation */

Compress: maz[v] := mazimum(maz[v], maz[P[v]])

Unrake: maz[v] := mazimum(maz[v], maz[P[v]])

Uncompress: max[v] := mazimum(maz[v], maz[P[v]])

During the contract phase maz is the maximum of the chain of values
between a vertex and its current parent. Thus, the maximum value of the
ancestors of a vertex v is the maximum of maz[v] and the maximum value of
the ancestors of P[v]. During the expansion, for a vertex that is done, maxz
is the maximum of all the ancestors of the vertex. Note that when a vertex
is unraked its parent is done. When a vertex in a chain is reintroduced, not
only was its child in an essential chain, so was its parent. Hence, it, too, is
done.

EXERCISE 2.14

Given a tree with connections between pairs of vertices, for each connec-
tion give the vertex that is the lowest common ancestor of the vertices
at the ends of the connection.

EXERCISE 2.15
Given T and B, the tree and back edges produced by a depth-first search
of a connected, undirected graph G' = (V,), find the low point number,

2.2 Parallel Tree Contraction 53

Low, for the each vertex v in V. That is, assume that the vertices are
labeled by their depth-first numbers. Then

there exists a back edge (z,w) €

. B such that z 1s a descendant of

Low[v] = min | {v} U< w | .
v, and w an ancestor of v in the

depth first spanning forest (V,T)

For a depth-first search sequential algorithm, see [AHUT4].

2.2.4 Optimal Parallel Tree Contraction for Binary
Trees

In this section we show a new operation, called SHUNT, to contract an
ordered binary tree to its root ([ADKP87], [KD88]). If the tree is not binary
it sometimes can be interpreted as a binary tree by introducing a new vertex
for every child vertex (see [ADKP87]). Otherwise one of the more general
algorithms must be used. Parallel tree contraction using shunting can reduce
a tree to its root in O(logn) time using n/logn processors on an EREW
PRAM. Note that the Basic_Contract algorithm is not optimal because the
time and processor product is greater than the time for the optimal sequential
algorithm. One of the inefficiencies is that by using Wyllie’s pointer jumping
for chains we get two chains where only one is essential.

Another problem with Basic_Contract is that it does not work on the
EREW model. The problem arises at the parent of a chain (a vertex in Vs
with a child in V7 is called the parent of a chain). If v is a parent of a
chain, then by using the pointer-jumping algorithm of Wyllie, we encounter
the problem that over time many vertices in the chain may eventually point
to v. Now, if v later becomes a vertex in Vi, then all these vertices will want
to jump over v and, therefore, must read P[v], which requires a concurrent
read.

We can avoid using Wyllie’s algorithm if we prevent chains from forming.
A chain is produced when the tree contains a binary subtree where each
internal vertex has one child that is a leaf and one that is not. After a RAKE
operation, the subtree becomes a chain. If we apply RAKE to a leaf followed
immediately by a COMPRESS on its sibling we prevent chains from forming.
We call this operation pair shunt. That is, to apply SHUNT to a leaf vertex,
v, we delete v and P[v] and set P[v'] to P[P[v]], where ¢’ is sibling of v.
Figure 2.16 shows an application of SHUNT to a leaf. Note that shunt applied

54 Chapter 2. List Ranking and Parallel Tree Contraction

to a leaf v does not produce any new leaves. The only effect on leaves is that
it removes v, so that each application of shunt to a leaf reduces the number
of leaves by one. Also note that shunt is not defined for a child of the root
vertex, because we can not apply COMPRESS to the root.

O

FIGURE 2.16
SHUNT applied to a left leaf. The dotted vertices have been removed from the tree.

However, we can not apply shunt to all leaves simultaneously. To prevent
concurrent reads we cannot apply SHUNT to two leaves with the same parent.
Otherwise the two leaves would attempt to reconnect their siblings to their
grandparent by jumping over their common parent at the same time. But we
also have to be careful not to apply SHUNT to leaves with different parents
that are also consecutive in a left to right ordering of the leaves. If we do
apply SHUNT to two such leaves we end up with two disconnected subtrees, as
shown in Figure 2.17. Therefore, we apply SHUNT to the odd numbered leaves
only. However, we still can get disconnected subtrees. Figure 2.18 shows such
a situation.

EXERCISE 2.16

Number the leaves of an ordered binary tree in O(logn) time using
n/logn processors on an EREW PRAM. Hint: Use the Euler Tour of
the tree.

To prevent the tree from becoming disconnected, we apply SHUNT first to
all the left children that are odd numbered and then to all the right children
that are odd numbered. We exclude the children of the root since SHUNT

2.2 Parallel Tree Contraction 55

O

O

FIGURE 2.17

SHUNT applied to two consecutive leaves. The vertex labels give the leaf numbering.

.
SNyt
.
.
et PN
Ke . e .
v N ' .
. ' . .
SO 3 o~
- RPN
.
.
.
.
.
. P
! y
.
‘ .

FIGURE 2.18
SHUNT applied to odd numbered leaves. The vertex labels give the leaf numbering.

56 Chapter 2. List Ranking and Parallel Tree Contraction

i1s undefined for these vertices. Notice that the relative order of the leaves
remaining stays unchanged. Therefore, we can renumber the leaves by simply
dividing the leaf numbers by 2. We repeat the algorithm until all leaves
are removed except for the children of the root at which point we evaluate
the root. The basic parallel tree contraction algorithm using SHUNT, called
Shunt_Contract, is shown in Algorithm 2.11. We use number as the index of
a leaf vertex in a left to right numbering of leaves, starting at 0. By starting
the numbering at 0, shunt is never applied to the left most leaf and this leaf
eventually becomes a child of the root. Nonleaf vertices have an index of 0.
The boolean side indicates whether a vertex is the left or right child of its
parent. The procedure shunt(v) applies rake to v and compress to sib[v] and
sets P[sib[v]] to P[P[v]], where sib is the sibling of v. Initially only leaves are
active. The result of a shunt operation on a leaf of an {+, x} expression tree
is shown in Figure 2.19.

Figure 2.20 shows the contraction of an expression tree to its root, using
Shunt_Contract. The linear form saved at a vertex is shown at the arc to the
parent. The linear forms in parentheses will be explained in the next section.

LEMMA 2.2
Shunt_Contract runs correctly on an EREW PRAM.

PROOF

Let vy and vg be nonconsecutive left (right) leaves. Then P[v1] and Plvs]
are not identical since vy and vy are both left (right) leaves, nor are Plv]
and P[vs] a parent of the other, since v; and vy are not consecutive
leaves. Therefore, v; and vy can read and write all the information
associated with themselves, their parents, and their siblings without
conflict. .

THEOREM 2.8
After O(logn) applications of Shunt_Contract on a EREW PRAM with

n/logn processors a tree with n vertices is reduced to its root. If the
RAKE and COMPRESS operations run in O(1) time then the overall run-
ning time is O(logn).

PROOF

2.2 Parallel Tree Contraction 57

ALGORITHM 2.11
The basic parallel tree contraction algorithm using shunting

Procedure shunt(v)
rake (v); active[v] := false;
active[P[v]] := false;
compress (sib[v]);
Plsiblo]] = PLP[]};

end shunt

Procedure Shunt_Contract
In parallel do /* Initialize */
if isLeaf[v] then
active[v] :=true;
else
active[v] := false;
number{v] := numberLeaves (v);
end in parallel

In parallel for i = 1 to [logn| do /* Contraction */
if v # root and active[v] then
if is0dd (number[v]) and P[v] # root then do
if side[v] = left then shunt (v);
if side[v] = right then shunt (v);
end then
else
number[v] := number[v]/2;
end in parallel
end Shunt_Contract

58 Chapter 2. List Ranking and Parallel Tree Contraction

O

FIGURE 2.19
The shunt operation applied to a leaf of a {4, X} expression tree.

Assign each processor log((n + 1)/2) consecutive leaves. During the
it" application of Shunt_Contract each processor eliminates 1/2 of its
log((n + 1)/2%) vertices. Hence, after logn applications, each processor
has eliminated all of its leaves. If RAKE and CoMPRESs run in O(1)

time then the overall running time is O(logn) time. .

Note that the rake and compress operations cannot be performed in
parallel as they could in Basic_Contract because both operations can simul-
taneously be operating on the same node. Also note that each round of
Shunt_Contract works on left leaves followed by right leaves. Therefore one
round of Shunt_Contract takes at least twice as long as one round of Ba-
sic_Contract.

All Subexpression Evaluation using SHUNT

As before, we can easily modify Shunt_Contract to enable us to evaluate
all subexpressions of the tree by applying an expansion phase following the
contraction phase. Note that when we applied SHUNT to a leaf v, P[v] never
receives its argument, sib[v], since P[v] is deleted from the tree. However, if we
expand the tree by running the contraction phase in reverse, when v and P[v]
are reintroduced the value of sib[v] has already been computed. As before,
we can prove this fact by using induction on the list of trees formed during
the expansion phase and noting that after every expansion all subexpressions
of the current tree have been computed. Thus, during the expansion phase,
we reintroduce the vertices eliminated during the corresponding application

2.2 Parallel Tree Contraction 59

FIGURE 2.20

Parallel tree contraction using Shunt_Contract. At each round SHUNT is applied to
the highlighted vertices. The expressions in parenthesis are saved for use during the
expansion phase.

60 Chapter 2. List Ranking and Parallel Tree Contraction

of the contraction phase. The state of the vertices are restored so that the
value of the reintroduced internal nodes can be computed.

Recall that for arithmetic subexpressions, Compress changes the linear
form saved at the vertex. Therefore in Basic_Contract we saved the current
state of a vertex on a stack each time we applied compress. Then, at the
corresponding point during the expansion phase, that state is popped off the
stack. Similarly for Shunt_Contract, we need to save the current state of sib[v]
before we apply the compress procedure. As it turns out, when we use shunt,
we can save the current state of sib[v] at vertex v before we apply compress
to sib[v]. We can eliminate the stack because every time we apply compress
to a vertex, we know we have just applied rake to its sibling and the sibling is
different every time. Thus, during the expansion phase when v and P[v] are
reintroduced, v has the correct state information for sib[v]. Recall that sib[v]
has already been computed so we can compute its contribution to P[v], given
this state information. Then we can apply unrake to v and uncompress to P[v].
The saved linear forms of the siblings appear in parentheses in Figure 2.20.

EXERCISE 2.17

Show the expansion phase for the example in Figure 2.20.

2.2.5 Optimal EREW PRAM Parallel Tree
Contraction Algorithm

In this section we exhibit an optimal deterministic EREW PRAM par-
allel tree contraction algorithm using O(n/P) time and P (P < n/logn)
processors [GMT88]. The algorithm has two stages. The first stage uses a
new reduction technique called M-CONTRACTION. The basic idea is to dynam-
ically divide the tree into subtrees, each of which has at most one unknown
leaf, and then assign the subtrees to P processors, which partially evaluate
the subtrees and succinctly compress the information to single vertices. In
this way a tree of size n is reduced to one of size P in O(n/P) time, using
P processors on an EREW PRAM. The second stage uses a technique called
ISOLATION to contract a tree of size P to its root in O(log P) time, using
P processors on an EREW PRAM. Isolation eliminates the concurrent reads
needed by the Wyllie approach used in the Basic_Contract procedure.

This section consists of three subsections. The first subsection contains
the basic graph theoretic results and definitions that we need in the following
subsection. In that subsection we show how to reduce the problem of size n
to one of size P, where P is the number of processors. In the last subsection

2.2 Parallel Tree Contraction 61

we show the 1solation technique used to implement parallel tree contraction
on a deterministic EREW PRAM in O(logn) time using n processors. We
then discuss some implementation techniques and the expansion phase for all
subexpression evaluation.

Basic Graph Theoretic Results

In this section we give some graph theoretic results that can be used to
find a set of vertices that subdivide a tree into independent subtrees of ap-
proximately equal size. From these subtrees we can define the m-contraction
of a tree to reduce the size of the tree.

First we consider the decomposition of a tree T into subtrees by finding
vertices that partition the edges of 7" in a natural way. The vertices we
consider are called m-critical vertices. Subtrees (subgraphs) are then formed
out of each partition of edges by reintroducing the vertices at the end points
of the edges. These subgraphs are known as bridges. We give the formal
definitions needed to define m-critical vertices and bridges next.

Let T = (V, E), be a directed graph in which every vertex, except the
root, points to its unique parent. The weight of a vertex v in 7" is the number
of vertices in the subtree rooted at v, denoted by W (v). If n equals the number
of vertices in T, the weight of the root r 1s n.

Let m be any integer such that 1 < m < n. In the next subsection we let
m = 2n/P, where P is the number of processors. A vertex, v, is m-critical
if

1. wvisnot a leaf, and

2. [M] > [va—ll] for all v’ € children (v).

m

LEMMA 2.3

If vi and vy are m-critical, then their least common ancestor is m-
critical.

PROOF

If either v; or vs is an ancestor of the other, then the lemma is trivially
true. We therefore consider case when neither is an ancestor of the other.
Let v be an m-critical vertex and let w be a child of v. Since [Mmﬂ] >
[Mmﬂl] > 1, the weight of v must be greater than m. Therefore, if vy
and vs are m-critical then both their weights are greater the m. Then

62 Chapter 2. List Ranking and Parallel Tree Contraction

u, the least common ancestor of v; and vy, must have weight greater
than 2m since it has two descendants with weight greater than m. Each
child of « can not have weight greater than W(u) — m because at least
one of v; and vy 18 not among the child’s descendants, implying that u
s m-critical. .

Let G = (V, E) be a graph and let C' C V. Two edges, e and e’ of G, are
C-equivalent if there exists a path from e to ¢’ that avoids the vertices C.
Also, let E' C E. E' induces a subgraph, G' = (E/, V'), with V' ={v e V | v
is an endpoint in E’}. That is, the endpoints of E’ are included in G’. The
graphs induced by the equivalence classes of the C-equivalent edges, are called
the bridges of C'. A bridge is trivial if it consists of a single edge. The
attachments of a bridge B are those vertices of B that are also in C'. An
example of the C-equivalent classes and their induced bridges of a graph are
shown in Figures 2.21 and 2.22.

The m-bridges of a tree 1" are bridges of C, where C' is the set of m-
critical vertices of T'. Note that the attachments of an m-bridge B are either
the root of B and/or one of its leaves. In Figure 2.23 we give a tree and its
decomposition into its b-bridges. The vertices represented by boxes are the
5-critical vertices, and the numbers next to these vertices are their weights.

LEMMA 2.4

If B s an m-bridge of a tree T, then B can have at most one leaf
attachment.

PROOF

The proof is by contradiction. We assume that B is an m-bridge of a
tree T, and vy and vy are two leaves of B that are also m-critical. We
prove that this 1s impossible. Let w be the lowest common ancestor of
vy and v 1n T. Since B is connected, w must be a vertex of B and
there must be a path from v; to w and from w to vs. Therefore, by
definition of an m-bridge w cannot be m-critical. On the other hand, w
1s m-critical by the above lemma. .

From Lemma 2.4 one can see that there are three types of m-bridges:
(1) a leaf bridge which is attached by its root; (2) an edge bridge which
is attached by its root and one leaf; and (3) a top bridge, containing the
root of T, which exists only when the root i1s not m-critical. Except for the

2.2 Parallel Tree Contraction 63

FIGURE 2.21
Square vertices represent members of C. FEach line type represents another C-
equivalent class.

FIGURE 2.22

The bridges of C. Square vertices are the attachments.

top bridge, the root of each m-bridge has a unique child. The edge from this
child to its root is called the leading edge of the bridge.

LEMMA 2.5

The number of vertices of an m-bridge is at most m + 1.

PROOF

Consider the three types of m-bridges: leaf, edge, and top. Suppose B
is a leaf bridge with root r’. Then 7’ is the only m-critical vertex in B
and has weight > m. Because m > 1, v/ must have a child, w, and this
child is unique in B. We claim that w has weight < m. Suppose it has
weight > m. Then we claim there is at least one m-critical vertex in
the subtree rooted at w. Because all paths from w to a leaf vertex have

64 Chapter 2. List Ranking and Parallel Tree Contraction

"

AN
VONFOVe

FIGURE 2.23

The decomposition of a tree into its 5-Bridges.

strictly decreasing weight and the leaf has weight 1, there exist some
vertex with weight > m and all of its children have weight < m. By
definition this vertex is m-critical, which contradicts that 7’ is the only
m-critical vertex in B. Thus, w must have weight < m and the number
of vertices of B 1s at most m. If B is an edge bridge with m-critical root
r’ and m-critical leaf u, then 7’ will have a unique child w in B. Since
u is not a leaf of 7" and all the vertices in the subtree rooted in u are
not in B, the number of vertices in B is W(w) — W(u) + 2 (we add 2 to
include vertices ' and u). Since w is not m-critical, W(w) — W(u) < m
by arguments similar to above. Thus, the number of vertices in B is
< m+ 1. The case for a top bridge follows by similar arguments. .

To devise a parallel algorithm, 1t would be convenient to have few m-
bridges [i.e., O(n/m)]. However, that is not always the case. For example,
consider an unbounded degree tree of height 1, where m < n and every edge
is an m-bridge. The following lemma shows, however, that the number of
m-critical vertices is not large.

LEMMA 2.6

The number of m-critical vertices in a tree of size n is at most 2n/m—1
forn>m.

2.2 Parallel Tree Contraction 65

PROOF

Let ng be the number of vertices in a minimum size tree with & m-critical
vertices. The lemma is equivalent to the statement:

k+1

5 ym, for k>1. (2.2.5)

g > (
We prove inequality 2.2.5 by induction on k. If v is m-critical, then its
weight must be at least m. This proves 2.2.5 for £ = 1. Suppose that
2.2.51s true for £ > 1 and all smaller values of k. We prove 2.2.5 for k+1.
Suppose that 7" is a minimum size tree with & + 1 m-critical vertices.
The root r of T" must be m-critical for it to be of minimal size, because
we can discard all of the tree above the first m-critical vertex (the root
bridge) without affecting the number of critical vertices. Assuming r is
m-critical, there are two possible cases for the children of root r: (1) r
has two or more children, uy, ..., u:, and each of their subtrees contains
an m-critical vertex; or (2) r has exactly one child v whose subtree
contains an m-critical vertex.

We first consider Case 1. Let n; be the number of vertices, and k; the
number of m-critical vertices in the subtree of u;, for 1 <7 < ¢. Since
T 1s of minimum size, uy, ..., u; must be the only children of ». Since
T has k + 1 m-critical vertices, one of which is the root, k = 22:1 k;
and 22:1 n; < ngy1. Using these two inequalities and the inductive
hypothesis we get the following chain of inequalities:

t
mi 2 Mooy 2 Yoy (M) m 2 (M) m,
= () m> (42 m= (S)

This proves Case 1.

In Case 2 the subtree rooted at u contains a unique maximal vertex w
which i1s m-critical, and the subtree of w contains k m-critical vertices.

Thus, the induction hypothesis shows that W(u) > (5L)m. We con-

2
sider two case, when k is odd and even. If k is odd then (k%l)m s an

integral multiple of m. In order for W (r) to be an integral multiple of
m greater than W(u),
k+1 k+2

W(r) > (T)m—l—m > (T)m

66 Chapter 2. List Ranking and Parallel Tree Contraction

k
2
W (r) to be an integral multiple of m greater than W (u),

If k& is even then Zm is an integral multiple of m. Again in order for

k+1 m k+2

g mt g =5

W) (:

ym

The m-contraction of a tree T' with root r is a tree T,, = (V’, E’), such
that the vertices V' are the m-critical vertices of T union r. Two vertices vq
and vy in V' are connected by an edge in Ty, if there is an m-bridge in T'
which contains both v; and vs. Note that every edge in T, corresponds to a
unique m-bridge in 7" which is either an edge bridge or the top bridge. Thus
by Lemma 2.6, T,,, is a tree with at most 2n/m vertices. In the next section
we show how to reduce a tree to its m-contraction, where m = 2n/P, in

O(m + logn) time on a EREW PRAM.

Reduction From Size n to Size n/m

In this section we show how to contract a tree of size n to one of size 2n/m
in O(m) time using n/m processors, for m > logn. If we set m = [2n/P],
then this gives us a reduction of a problem of size n to one of size P. In the
next section we show how to contract a tree of size P to a point.

From the previous section, we learned that there are at most 2n/m — 1,
m-critical vertices; but possibly many more m-bridges. Since we have no
bound on the number of m-bridges in a tree, we cannot simply assign an m-
bridge to each processor. However, since we are assuming that the tree is of
bounded degree d, there can be at most d m-bridges common to and below an
m-critical vertex of T'. Therefore, to perform the reduction, we need only find
the m-critical vertices and efficiently assign them to processors. A processor
is assigned to each m-critical vertex and computes the value (function) of the
(at most d) m-bridges below it. A processor is also assigned to the top bridge
if the root is not m-critical, and computes the function for the top bridge.
Since each m-bridge has at most m + 1 vertices, a processor can sequentially
compute the value or function of its O(1) m-bridges in O(m) time. The sketch
of the algorithm is in Algorithm 2.12.

The following example illustrates this procedure. Consider again an
expression tree. The evaluation of a leaf bridge is the value of all the vertices
of the subtree. An edge or top bridge can be considered as a unary function,
with the leaf attachment as the indeterminate. That is, the evaluation of

2.2 Parallel Tree Contraction 67

ALGORITHM 2.12
Sketch of m-Contract

Procedure m-Contract (T)

1. m:=[2n/P]

2. Compute W{v] and [W[v]/m] for all vertices v in T

3. Determine the m-critical vertices in T’

4. Assign a processor to each m-critical vertex and one to the root

5. Each processor computes the value of the leaf bridges or the unary func-
tion of the edge or top bridges below the m-critical vertex or root assigned
to it

6. Return the m-contraction of T’

the edge or top bridge, with leaf attachment vertex I, and root ry, is a unary
function f; such that value[r;] = f;(value[l;]). Figure 2.24 shows a expression
tree over {+, x, —}, its division into 5-bridges, and its 5-contraction.

Assume that a tree is given as a set of pointers from each child to its
parent and that the tree is ordered. That is, the children of a vertex are
ordered from left to right and each child knows its position (index) in that
ordering. Furthermore, assume that each parent has a consecutive block of
memory cells, one for each child, so that each child can write its value, when
known, into its location using its index. This last assumption permits us to
compute the maximum value of each set of siblings needed to determine the
m-critical vertices.

The Bounded Degree Case In this subsection we consider each step in
more detail for trees of bounded degree. In order to implement many of the
steps in the m-Contract procedure we use the Euler tour of a tree, which is
a list of both forward and backward edges of the tree in depth first order.
Therefore, we add finding the Euler tour of the tree T" to Step 1.1. For a
more detailed discussion on Euler tours and their construction and use see
the following chapter.

Step 1.1
Compute m and find the Euler tour of 7. Next we use list ranking to

68 Chapter 2. List Ranking and Parallel Tree Contraction

FIGURE 2.24

The 5-contraction of an expression tree.

order the edges of 7', which we then use to map the i** edge of the tree
to the i element of an array. By ordering the edges in an array, rather
than in a linked list, we can perform the All Prefix Sum operations on
the array without traversing the linked list each time.

Implementation note: If we are working on a distributed memory par-
allel computer, we need to send to each processor the information for
the edges corresponding to a consecutive block of the Euler tour array.
Karlin and Upfal [KU86] show that once the Euler tour numbering is
known the information corresponding to an edge can be moved to its
correct location in O(logn) time using a randomized algorithm. Ranade
[Ran87] gives an algorithm for moving the data on a Butterfly network.

Implementation note: Although the running time of All Prefix Sum
calculations on a linked list is the same as on an array for a PRAM,
on a fixed connection machine, the array representation can result in an
log n improvement in running time. In particular, it can be shown that
the All Prefix Sums can be computed in 6 logn time on a binary N-cube
parallel computer, where N = n/logn, whereas list ranking on the same
size N-cube computer takes O(log2 n) time. Therefore, the m-Contract

2.2 Parallel Tree Contraction 69

algorithm does a single list ranking, converts the linked list to an array,
and then performs All Prefix Sum operations on the array.

Step 1.2

We need to compute the weight of each vertex, that is the number of
vertices in the subtree root at that vertex. Similar to the number of
descendants computed in the chapter on Euler tours, the weights can be
computed by numbering every forward edge with 1 and backward edge
with 0, finding the All Prefix Sums using addition, and computing the
weight of a vertex as one plus the difference between the prefix sum of
backward edge leaving the vertex and the prefix sum of forward edge
entering the vertex.

Step 1.3

We need to revert back to the original representation of the tree in order
to determine which vertices are m-critical. This i1s easy to do if we save
the location of the vertex in the original representation with the forward
edge of the Euler tour representation. A processor is responsible for
[n/P] vertices. Each vertex writes its weight to the memory locations
reserved by its parent, denoted by wi. That is, vertex v writes weight[v]
to wt[P[v], index[v]]. In this way, each vertex has the weights of all its
children in a subarray. We can then perform a Segmented All Prefix
Sum operation using the max operator so that the All Prefix Sum starts
afresh each time it reaches a new subarray of the wt array. Let mazwt
be the result of the Segmented All Prefix Sum. A vertex is m-critical if
[weight[v]/m] > [mazwt[v]/m].

Step 1.4

We enumerate the m-critical vertices, by assigning a 1 to m-critical
vertices and 0 to all others, and then compute the All Prefix Sum over
the addition operator. Processor 7 is responsible for the 7" m-critical
vertex and Processor 0 is responsible for the root if the root is not m-
critical.

Step 1.5

Each processor evaluates the m-bridges below the m-critical vertex as-
signed to it. The number of m-bridges below an m-critical vertex is
equal to the number of children of that vertex and is bounded by d, the

70

Chapter 2. List Ranking and Parallel Tree Contraction

degree of the tree. If there i1s a depth-first-search sequential algorithm
to evaluate an m-bridge, then a processor can evaluate the m-bridges by
simply scanning the Euler tour of the tree starting at the forward edge
of the first child of the m-critical vertex. Traversing the Euler tour is
equivalent to a depth first traversal. Note that all the edges of a leaf
bridge are in consecutive edges of the Euler tour. Thus, if the m-bridge
is a leaf bridge, then when the processor returns back to its m-critical
vertex 1t will have completely evaluated the subtree. The next forward
edge on the Euler tour is the first edge of the next m-bridge for which
the processor is responsible. On the other hand, the edges of an edge or
top bridge are in two separate consecutive edges of the Euler tour, the
intervening edges being part of the subtree routed at the leaf attach-
ment. Therefore, if the m-branch is an edge or top bridge, the processor
will reach an m-critical vertex that is not its own. This vertex represents
the indeterminate of the edge or top bridge function. To continue its
tour of the m-bridge the processor needs to jump to the corresponding
backwards edge. Again, when it reaches its own m-critical vertex it has
completed the evaluation of the m-bridge and is ready to proceed with
the next m-bridge, if there is one. There 1s another m-bridge if the next
edge is a forward edge. Otherwise, there are no more m-bridges.

Since each m-bridge has at most m—+1 vertices, if the sequential running
time of evaluating an tree of m vertices is T'(m), then a processor can
evaluate all its m-bridges in O(7T'(m)). For example, the sequential eval-
uation of expression trees over the operators {+, x} is linear. Therefore,
evaluating the m-bridges take O(m) time.

Implementation note: If the m-Contract is implemented on a distributed
memory parallel machine then each processor maintains the data corre-
sponding to n/P vertices and 2n/P = m consecutive edges of the Euler
tour. The m-bridges for which a processor is responsible are located in
at most d+ 1 separate portions of the Euler tour. Each separate portion
can contain at most 2m edges and, therefore, can only be located in the
memory of at most 3 processors. Thus, a processor needs to access the
memory of at most 3d + 3 processors.

Step 1.6
We return the Euler tour of m-contraction of the tree. The Euler tour
is easily computed using the All Prefix Sums of the m-critical vertices.

2.2 Parallel Tree Contraction 71

The Unbounded Degree Case In this subsection we show how to com-
pute the m-contraction of an unbounded degree tree. In the unbounded case
the number of m-bridges immediately below an m-critical vertex may be large
and in particular the number of leaf m-bridges may be much larger than the
number of processors. Therefore, we cannot load balance by simply assign-
ing a processor to all the m-bridges immediately below an m-vertex. On the
other hand, the total number of bridges that are either a top bridge or an
edge bridge is bounded by the number of m-critical vertices which, in turn, is
bounded by 2n/m. To handle the unbounded degree case, we change Step 5
of m-Contract (Algorithm 2.12) into 3 substeps, as shown in Algorithm 2.13.

Each processor is assigned one edge or top bridge and some number of
leaf bridges, depending on their size. To evenly divide the leaf bridges among
the processors we compute the All Prefix Sums of their weights. That is, we
assign the leading edge of a leaf bridge a value equal to the weight of the
child vertex of the leading edge. To all other edges, assign a value of zero.
Let S[e] be the sum up to edge e. We would like to assign each processor an
equal number of vertices. We approximate this by assigning processor ¢ all
leaf bridges with leading edge e such that [(i — 1) -n/P] < S[e] < [i -n/P].
A processor need only know the first leaf bridge in its interval for which it is
responsible. That is, let proc[e] be the processor number responsible for edge
e. Then procle] = [S[e]P/n] and processor 7 is responsible for all leaf bridges
with edges e such that procle] = i. The first leal bridge in the interval has
leading edge €’ such that procle’] > procle’ — 1] .

In the unbounded degree case, a processor may be required to evaluate
many small leaf bridges, since there may be a large number of them.

ALGORITHM 2.13

Step 5 of m-Contract for unbounded degree trees

5. Assign m-bridges to processors:

(a) Assign to each leading edge of a leaf bridge a value equal to the weight of
its bridge. To all other edges, assign a value of zero. Compute All-Prefix-

Sums of value; let S(e) be the sum up to e and proc[e] = [S[e]P/n].
(b) if procle] > procle — 1] then firstLeafBridge[procle]] = e
(c) Using the All-Prefix-Sums procedure, assign a new processor to each edge

or root m-bridge.

72 Chapter 2. List Ranking and Parallel Tree Contraction

Isolation and EREW Parallel Tree Contraction

In the previous section we showed that if we find an EREW parallel
tree contraction algorithm, which takes O(logn) time and uses n processors,
then we get an O(logn) time, n/ logn processor EREW PRAM algorithm for
parallel tree contraction, by first applying m-Contract. Thus, we may restrict
our attention to O(n) processor algorithms. In this section we present a
technique called ISOLATION and use it to implement parallel tree contraction
on an EREW PRAM without increasing the time and processor count of
Basic_Contract.

Recall that the Basic_Contract algorithm seems to require concurrent
reads because the pointer jumping technique of Wyllie causes tails of essential
and nonessential chains to have the same parent. A concurrent read occurs
when this parent eventually has only one unevaluted argument and extends
these chains; all the vertices that were the tails of the chains want to jump
over the parent. We call a chain an isolated chain if no chain can join it
and 1t cannot join another chain in any round of contraction until the chain
is compressed to a single vertex. One way to avoid concurrent reads is to
compress an isolated chain to a single vertex before allowing it to join another
chain. When a vertex has only a single unevaluated argument and it is not
part of an isolated chain, we say the vertex is free, because it is free to form
a new isolated chain. Once an isolated chain is compressed to a single vertex,
that vertex is made free. Algorithm 2.14 displays a high level description of
Isolate_Contract, a deterministic algorithm for parallel tree contraction. We
use the subprocedure isolate to prevent vertices not in the chain to become
part of the chain and the variable inChain to indicate whether a vertex is
part of an isolated chain or not. We use the subprocedure isSingleton to test
whether a chain has been reduced to a single vertex.

The difference between the contraction phase used in this algorithm and
the contraction phase of Basic_Contract is that the COMPRESS 1s replaced by
two operations: [SOLATE and LocAL COMPRESS. ISOLATE marks each chain
so that it cannot become part of another chain. Fach LocarL CoOMPRESS
applies one conventional COMPRESS operation to an isolated chain during
each contraction phase.

Implementation Techniques We present one method of implementing
the generic contraction phase on an EREW model in O(logn) time, using
n processors. Recall that when we compress a chain using Wyllie’s algo-
rithm, two chains are created, one essential and one not useful. We modify

2.2 Parallel Tree Contraction 73

ALGORITHM 2.14
ISOLATE and CONTRACT for Deterministic Parallel Tree Contraction

Procedure Isolate_Contract
In Parallel inChain[v] := false; /* Initialize */
end in parallel

In Parallel while Arg(v) =0 do
if P[v] # nil then do

Parallel Case Arg(v) equals

0) rake(v); /* RAKE */
mark(label[P[v], index[v]]);
Plv] := nil;

1) if not inChainfv] then /* IsoLATE */
isolate(v);
inChainlv] := true;
else /* LocalL CoMPRESs */
compress(v);
if isSingleton(v) then inChain[v] := false;
end case

end then
end in parallel
end Isolate_Contract

Wryllie’s pointer-jumping algorithm so that processors that pointer jump over
nonessential chains eventually stop before a concurrent read take place. Any
chain found in one round is isolated so that it cannot join any other chain
found in succeeding rounds. By isolating any chain of length two or more and
compressing it until it becomes a single vertex, we can ensure that all jumping
over nonessential chains stops before this single vertex is free to become part
of another chain.

One way to isolate a chain is to mark the vertices of the chain as being
either the head, a middle vertex, or the tail of the chain. The head of the
chain is the first vertex in the chain and its child is either a leaf or has more
than one child. The tail of the chain is the last vertex in the chain and its

74 Chapter 2. List Ranking and Parallel Tree Contraction

parent has more than one child. A middle vertex lays somewhere between the
head and the tail of the chain.

An essential chain contains the head of the original chain which will
eventually be evaluated during the contraction phase. After several rounds of
pointer jumping, all the vertices of the chain will point to v, the parent of the
chain. To avoid having all vertices of the chain trying to find the parent of v,
we only allow the head of the chain to jump over v. That is, only the head
of the chain can be free to form part of a new chain. All other vertices of the
chain stop pointer jumping.

Figure 2.25 shows the isolation and compression of a chain and the
tagging of vertices as described below. To isolate a chain we tag the vertices
of the chain with one of three possibilities: R, M, or T, depending on whether
it is the tail, middle, or head of a chain. If a vertex is not part of an isolated
chain it is tagged with (. All vertices are initially tagged with $. During
the COMPRESS phase, the tail of a chain does no pointer jumping, because it
is isolated from any newly isolated chains in front of it. Whenever a middle
vertex of a chain jumps over the tail, that middle vertex becomes a tail of a new
chain. That is, every round of pointer jumping creates one new chain with a
new tail. Eventually, every middle vertex becomes a tail of some nonessential
chain and stops pointer jumping. At the same time or at the next round, the
head of the chain jumps over the tail; the essential chain i1s a single vertex,
the head of the chain. It is at this point the head becomes “free” to join a
new isolated chain. A vertex v is free if Arg(v) = 1 and Tag = §; otherwise v
is not free. Thus, the tag of the head is set to @ to indicate that it is now not
part of an isolated chain.

When a vertex v is free to become part of a new isolated chain, we need
to determine its new tag. A vertex is the tail of a chain if its parent is not
free and its child is free; it is the head of a chain if its parent is free and 1its
child is not free; and it 1s a middle of a chain if both its parent and child
are free. In this way, isolated chains contain at least two vertices, a tail and
a head. To determine whether a child is free, each child vertex maintains a
boolean variable, free, that its parent can read to determine whether it is free
or not. No concurrent reads can take place because each vertex has only one
parent. But, because a vertex can be the parent of several chains, we must be
sure that the tails of new isolated chains do not attempt a concurrent read.
Therefore, each parent vertex v also maintains an array pFree that indicates
whether v 1s free or not multiple times and is indexed by the index of its
children (i.e., each child reads one array entry exclusively). Initially all the

2.2 Parallel Tree Contraction 75

h

FIGURE 2.25
Three applications of Isolate_Contract. Root, middle and head nodes of an isolated
chain are labeled R, M and T respectively. Nodes not part of an isolated chain are
tagged with 0.

76 Chapter 2. List Ranking and Parallel Tree Contraction

elements of the array indicate that a vertex is not free. When a parent vertex
becomes free it has only one unevaluated child remaining. We assume that
the index of this child is set into the variable child by the procedure Arg.
Thus, the free parent need only update the array entry indexed child, since
there are no other children to read the other entries. Algorithm 2.15 shows
an implementation of the Isolate_Contract procedure.

LEMMA 2.7

After each application of Isolate_Contract |Com| decreases by a factor

of at least 1/4.

PROOF

By the way the ISOLATE operation is implemented, each isolated chain
has a length of at least 2. Moreover, every pair of free vertices is part of
an isolated chain, i.e., no two consecutive vertices are singleton vertices.
Thus, at every phase of the algorithm, the whole length of a chain con-
sists of a sequence of isolated chains interspersed with singleton vertices.
In the worst case, a complete chain consists of an alternating sequence
of a singleton and an isolated chain of length three, possibly followed
by a singleton. Recall that C'om does not include the head of a chain
so that the final singleton can be ignored. In such a case, after a single
COMPRESS only one vertex in each isolated chain is eliminated and all
the other vertices in the chain remain; that is only one in four vertices
is eliminated. .

Since step RAKE removes 1/5 of Ra and steps ISOLATE and LOCAL
CoMPRESSs remove 1/4 of Com, together they must remove 1/5 of the vertices.
This gives the following theorem.

THEOREM 2.9

A tree of n vertices 1s reduced to its root after one applies Isolate_Contract
[logs s n] times.

THEOREM 2.10

Tree contraction can be performed, deterministically, in O(n/P) time
using P processors on an EREW PRAM for all P < n/logn.

2.2 Parallel Tree Contraction 77

ALGORITHM 2.15
An implementation of Isolate_Contract

Procedure Isolate_Contract_by_Tagging
In Parallel Tag[v] :=0;

In Parallel while Arg (v) =0 do
if P[v] # nsl then do

Parallel Case Arg (v) equals
0) rake (v);

mark (label[v)]);

Plv] := nil;

1) Parallel Case Tag[v] equals
0) free[v] = true;
pFreefv, child[v]] = true;
if pFree[P[v], indes[v]] then
if free[child[v]] then

Tag[v] := M,
else
Tag[v] := H,;
else if free[child[v]] then
Tag[v] := R;

M) if Tag[P[v]] = R then Tag[v] := R;

compress (v); Plv] := P[P[v]];

H) if Tag[P[v]] = R then Tag[v] := 0;

compress (v); Plv];= P[P[v]];
end case
end case

end then
end in parallel
end Isolate_Contract_by_Tagging

/* RAKE */

/* ISOLATE */

/* LocaL COMPRESS */

/* isSingleton */
/* LocaL COMPRESS */

78 Chapter 2. List Ranking and Parallel Tree Contraction

The Expansion Phase If we use procedure Isolate_Contract to evaluate
an arithmetic expression it will not return the value of all subexpressions.
To compute the value of all subexpressions we run the contraction phase
“backwards” in a parallel tree expansion phase. Because Basic_Frpand in
Section 2.2.3 only expands along essential chains Basic_Ezpand uses only ex-
clusive reads and writes. Therefore, we can follow Isolate_Contract with Ba-
sic_Brpand to obtain the value of all subexpressions.

If we used Isolate_Contract in conjunction with m-Contract we need
to compute the value of all subexpressions for edge and top bridges. Again,
processors can simply re-evaluate the bridges for which they are responsible, as
they would leaf bridges, using the now known values of their leaf attachments.

2.2.6 Parallel Tree Contraction for Trees of
Unbounded Degree

The discussion on Basic_Contract in Section 2.2.3 assumed that the tree
was of bounded degree. When the tree has unbounded degree, two problems
can arise with Basic_Contract. One is that we need a way to test whether
Arg(v) equals 0 or 1 in constant time. The other is that the time to perform
a RAKE may depend on the number of children of a vertex, and hence is not
constant time. For this latter problem we show that by simply running RAKE
and COMPRESs asynchronously we continue to get O(logn) running time.

If the number of arguments per vertex is bounded we can test whether
Arg(v) equals 0 or 1 in constant time by counting the number of unmarked
labels for v using the processor assigned to it. But when the number of argu-
ments 1s unbounded we need to use the processors of the children vertices to
compute Arg(v). We start by setting aside a memory location arglIndex[v] =
null. Each processor that does not know the value of its vertex writes its
index into the memory location of its parent. That is, all children that do
not know their values do a concurrent write to their parent arglndex[v] as
shown in Algorithm 2.16. Assume that one of these children succeeds in writ-
ing its index. If argIndexz[v] = null then all the children know their value
and Arg(v) = 0. To test whether Arg(v) = 1, each processor that doesn’t
know its value reads arglIndex of its parent and if the value is not the same
as 1ts own index it rewrites its index to argindex of its parent. If the value
of argIndex does not change then only one child attempted to write to it
initially, implying that Arg(v) = 1. Otherwise, Arg(v) > 2.

Up until now we have assumed that the rake operation could be per-
formed in constant time. For many applications this is not the case. Miller

2.2 Parallel Tree Contraction 79

ALGORITHM 2.16

Determining the number of unknown arguments of a vertexr of a tree with

unbounded degree on a CRCW PRAM

Function Arg(v)

argIndex[v] := null;

if val[v] = null then /* concurrent write to parent */
argIndez[P[v]] := index[v];

if argIndex[v] = null then /* all args known */
return 0;

oldArg[v] := argIndez[v];
if val[v] = null then

if argIndes[P[v]] # index[v] then /* concurrent read */
argIndez[P[v]] := index[v]; /* concurrent rewrite */
if old Arg[v] = argIndex[v] then /* no rewrites*/
return 1;
else /* 1 or more rewrites */
return 2;
end Arg(v)

and Reif [MR90] show that finding canonical labels for trees has a rake op-
eration that is considerably more complicated than just deletion. It requires
sorting the labels assigned to the children of a vertex, which requires O(logn)
time. Thus, the parallel time of raking the leaves of a vertex with & children
is O(log k). If we require one application of CONTRACT to finish completely
before we start the next application of CONTRACT then total cost to reduce
a tree to its root is the cost for rake times the logarithm of the size of the
tree. Thus, the naive analysis for canonical labels would be that it runs for
O(log2 n) time. We improve the running time by a factor of logn below.

We modify parallel tree contraction so that for those parts of the tree
where CONTRACT has already finished we implement a new round of CoN-
TRACT, 1.e., each processor executes CONTRACT asynchronously. We shall
assume that the time used to remove the leaves of a given vertex is only a
function of the number of leaves at that vertex. We should point out that
the synchronous and asynchronous versions of CONTRACT may return very
different answers. For example, when computing canonical forms for trees by
sorting leaves both the synchronous and asynchronous algorithms are correct.

80 Chapter 2. List Ranking and Parallel Tree Contraction

However, the two algorithms produce different sets of canonical labels. In
addition, the asynchronous version is faster.

Asynchronous_Contract can be described graph theoretically by viewing
it as operating on trees with special leaves which we call phantom leaves.
The algorithm runs in stages. Initially the tree 7" has no phantom leaves.
We apply the procedure CONTRACT to T to obtain the tree 77. If a given
vertex v € 1" has k > 2 children that are nonphantom leaves then we replace
them with a new phantom leaf w € 7. Furthermore, if the time required for
Asynchronous_Contract to process these k children of v is ¢ then the phantom
vertex w persists for ¢ stages, at which time it simply disappears. Every time a
new block of children of v become leaves a new phantom child replaces them.
In this way a vertex may have several phantom children. Until all leaves,
including phantom leaves, of a vertex are removed the vertex is not a leaf.
The time to execute Asynchronous_Contract is the number of stages it takes
to reduce the tree to its root and for all phantom leaves to disappear.

THEOREM 2.11

If the cost to rake a vertex with k children is bounded by O(log k) then
Asynchronous_Contract requires only O(logn) time.

PROOF

Suppose the time to rake k children of a vertex is bounded by clogk for
k > 2 and rake for a single child can be performed in unit time. We
analyze the time used by Asynchronous_Contract using an amortization
argument. We assign weights to the vertices of the tree such that, at
any stage of the algorithm, the weight of the tree reflects the progress
made so far. We show that the weight for the tree as a whole decreases
by a constant proportion at each stage.

The problem is that Asynchronous_Conltract can go through several
stages removing no leaves, and then remove many leaves. We want
to be able to say that at every stage a constant proportion of the work
is done. By introducing phantom leaves for accounting purposes, we
can take some credit at each stage for the work performed by rake,
while making sure that the overall credit for raking & leaves remains k.
Therefore, we introduce the notion of a weighted tree. A weighted tree
is a tree with weights assigned to the vertices. The weight of a tree is
the sum of the weights of the vertices in the tree. In this application all
vertices have weight 1, except phantom leaves which may have arbitrary

2.2 Parallel Tree Contraction 81

real weights greater than or equal to 1. Initially, the weight of the tree
is the size of the tree.

First we describe in more detail how weights are assigned to phantom
leaves. Suppose the time required to rake the & non-phantom leaves of
a vertex v is f(k). There is a subtlety here; if the time to rake k leaves
of a vertex varies from vertex to vertex, the way the tree contracts may
vary dramatically. Our analysis only depends on an upper estimate for
the time to rake the children of a vertex. We define 3 to be a function of
k, such that gf¥)=1(k) =1 for f(k) > 0. Hence B(k) < 1 for all k > 2.
The constant f(k) is the rate at which the phantom leaf decays. We
replace the k leaves of vertex v with a phantom leaf w, which we give
weight k. After each successive stage we decrease the weight on w by a
factor of F(k) until the weight equals one. In the next stage we simply
delete the phantom leaf w. Thus, the phantom leaf w exists for f(k)
stages, at which time it is deleted. Note that the weight of a phantom
vertex 1s always at least 1.

As in the proof of Theorem 2.4 we partition the vertices of T into two
sets, Ra and Com. We claim that the weight of C'om decreases by a
factor of 1/2 at each stage while the weight of Ra decreases by a factor
of at least (4 4+ 3)/5 at each stage, where § = max{§(k)|l < k < n}.
Note that different phantom leaves decay at different rates. We have
picked [to be the slowest such rate. The fact that C'om decreases by
1/2 follows by noting that the vertices in C'om are processed the same
way as in CONTRACT and their weights are all one. Next we consider
the case of Ra. Recall that Ra = Vo U Vo U Cy U C5 U GC'5, where V) is
the set of leaves and phantom leaves. Since the weight on any vertex in
Vo 1s at least one and the weight of any vertex not in V4 is 1 we see that
that weight of 4 is at least 1/5 of the weight of Ra. On the other hand
the weight of Vj decreases by at least 3 at each stage. Thus, the weight
of Ra decreases by at least a factor of 4/5+ /5 at each stage.

This shows that the number of stages is bounded by log n base 5/(4+ 3).
For a particular case of interest, when f(k) < clogk for some constant ¢
and k > 2, we see that 3 is bounded away from 1 for all n. This proves
the Theorem. .

2.2.7 Conclusions

82 Chapter 2. List Ranking and Parallel Tree Contraction

In this section we have shown the paradigm of parallel tree contrac-
tion, which can be used to perform computations over trees efficiently and is
quite general. This paradigm often supplies computationally superior paral-
lel algorithms than algorithms that use divide-and-conquer. In addition, the
algorithms are usually easier to devise and understand.

We introduced several concepts that were important in the design of
parallel tree algorithms. First we introduced RAKE and CoMPRESS which
allowed us to separate the processing of leaf vertices from internal vertices.
For many applications, finding the rake subprocedure is obvious, especially
when the natural flow of information is from the bottom up. COMPRESS
requires finding a way to combine the information for a pair of vertices in
a chain succinctly. For example, for expression trees defining the compress
subprocedure simply requires finding an efficient representation for the unary
function that represents an expression tree with one unknown leaf, and then
applying function projection and composition.

When an application either requires results for all subtrees or the natural
flow of information is from the top down, an addition expansion phase is
required. This expansion phase is simply the contraction phase run in reverse
using unrake and uncompress subprocedures. Often they are similar to their
counter parts. However, when information flows from the bottom up and the
top down, unrake can be quite different from rake.

The next major concept we introduced was SHUNT for binary trees. It is
possible to use shunt because there is an efficient algorithm to number leaves.
SHUNT was applied only to odd numbered leaves, and combined RAKE and
COMPRESS into a single operation. However, in designing a shunt subproce-
dure, it is usually easier to think of it as a rake followed by a compress on the
sibling vertex.

The next major concept was the notion of dividing a tree into blocks of
subtrees on which processors could work. The processors reduce the subtrees
to single edges forming a smaller tree. The number of vertices in this tree
equals the number of processors so that, at this point, a nonoptimal algorithm
can be used to reduce the tree to the root.

To obtain an EREW algorithm we introduced the concept of isolating a
chain, so that new vertices cannot join the chain, and reducing the chain to
a point before allowing it to become part of a new chain. By isolating chains
we prevented concurrent reads and writes.

The basic tree contraction algorithm is not optimal and uses concurrent
reads and writes. It runs in O(logn) time using n processors, as long as rake

2.2 Bibliography 83

and compress take O(1) time. If rake takes as much as O(logn) time and we
can rake and compress different parts of the tree asynchronously, then we still
only use O(logn) time overall. The remaining algorithms are optimal and use
only exclusive reads and writes. Shunt has somewhat greater constants and
can only be used on binary trees, which limits its applicability, whereas the
constants for the m-contract/isolation algorithms are greater than the other
tree contraction algorithms, making them less practical.

TABLE 2.2
Time and processor count for the parallel tree contraction algorithms dis-
cussed in this section.

Problem Time Processors Work
basic tree contraction O(logn) | O(n) O(nlogn)
tree contraction for binary trees O(logn) | n/logn O(n)
deterministic tree contraction O(n/P) | P, P<n/flogn | O(n)

tree contraction, unbounded degree | O(logn) | n/logn O(n)

Bibliography

[ADKP8&7] K. Abahamson, N. Dadoun, D. K. Kirkpatrick, and T. Przytycka. A
simple parallel tree contraction algorithm (preliminary version). In Proceed-
ings of the 25th Annual Allerton Conference on Communication, Control, and
Cumputing, pages 624-633, Monticello, Illinois, Sept/Oct 1987.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[AMS8S8] Richard J. Anderson and Gary L. Miller. Deterministic parallel list rank-
ing. In J. H. Reif, editor, VLSI Algorithms and Architectures: 3rd Aegean
Workshop on Computing, AWOC 88, pages 81-90, N.Y., June/July 1988.
Springer-Verlag. Lecture Notes in Computer Science, Vol. 319.

[AM90] Richard J. Anderson and Gary L. Miller. A simple randomized parallel
algorithm for list-ranking. Information Processing Letters, 33(5):269-273,
January 1990.

[B1e90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press,
1990.

[BOVS85] I. Bar-On and U. Vishkin. Optimal parallel generation of a computa-
tion tree form. ACM Transactions on Programming Languages and Systems,
7(2):348-357, April 1985.

84 Chapter 2. List Ranking and Parallel Tree Contraction

[Bre74] R. P. Brent. The parallel evaluation of general arithmetic expressions.
Journal Assoc. Computing Machinery, 21(2):201-208, April 1974.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Annals of Math. Statistics, 23, 1952.
[CV86Ga] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree, and graph problems. In 27th Annual Symposium on
Foundations of Computer Science, pages 478-491, Toronto, Oct 1986. I[EEE.

[CV86Db] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications
to optimal list ranking. Information and Control, 70(1):32-53, 1986.

[Fic83] Faith E. Fich. New bounds for parallel prefix circuits. In Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, pages 100-109,
Boston,MA, April 1983. ACM.

[GMTS88] H. Gazit, G. L. Miller, and S-H Teng. Optimal tree contraction in an
EREW model. In S. K. Tewksbury, B. W. Dickinson, and S. C. Schwartz,
editors, Concurrent Computations: Algorithms, Architecture and Technology,
pages 139-156, New York, 1988. Plenum Press. Princeton Workshop on
Algorithms, Architecture and Technology Issues for Models of Concurrent
Computation.

[KD88] S. R. Kosaraju and A. L. Delcher. Optimal parallel evaluation of tree-
structured computation by ranking (extended abstract). In J. H. Reif, editor,
VLSI Algorithms and Architectures: 3rd Aegean Workshop on Computing,
AWOC 88, pages 101-110. Springer-Verlag, N.Y., June/July 1988. Lecture
Notes in Computer Science, Vol. 319.

[KU86] Anna Karlin and Eli Upfal. Parallel hashing—an efficient implementation
of shared memory. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, pages 160168, Berkeley, May 1986. ACM.

[LF80] Richard E. Ladner and Michael J. Fisher. Parallel prefix computation.
Journal Assoc. Computing Machinery, 27(4):831-838, October 1980.

[Mil86] Gary L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. Journal of Computer and System Sciences, 32(3):265-279, June 1986.
invited publication.

[MR85] Gary L. Miller and John H. Reif. Parallel tree contraction and its ap-
plication. In 26th Symposium on Foundations of Computer Science, pages
478-489, Portland, Oregon, October 1985. IEEE.

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Funda-
mentals. In Silvio Micali, editor, Randomness and Computation, pages 47-72.
JAT Press, 1989. Vol. 5.

[MR90] Gary L. Miller and John H. Reif. Parallel tree contraction part 2: Further
applications. SIAM J. Comput., 1990. to appear.

[MT87] Gary L. Miller and Shang-Hua Teng. Systematic methods for tree based
parallel algorithm development. In Second International Conference on Su-
percomputing, pages 392-403, Santa Clara, May 1987.

2.2 Bibliography 85

[Ran87] A. Ranade. How to emulate shared memory. In 28th Annual Symposium
on Foundations of Computer Science, pages 185-194, Los Angeles, Oct 1987.
[EEE.

[Vis84] U. Vishkin. Randomized speed-ups in parallel computation. In Proc.
of the 16th Annual ACM Symp. on Theory of Computing, pages 230-239,
Washington D.C., April 1984. ACM.

[Wyl79] J. C. Wyllie. The complexity of parallel computation. Technical Report
TR 79-387, Department of Computer Science, Cornell University, Ithaca, New
York, 1979.

