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1. Introduction 

Depth first search is a very useful technique for analyzing graphs. For example, it can be used to: 

0 Determine the connected components of a graph. 

0 Find cycles in a directed or undirected graph. 

0 Find the biconnected components of an undirected graph. 

0 Topologically sort a directed graph. 

0 Determine if a graph is planar, and finding an embedding of it if it is. 

0 Find the strong components of a directed graph. 

If the graph has n vertices and m edges then depth first search can be used to solve all of these 
problems in time O ( n  + m), that is, linear in the size of the graph. 

2. Depth First Search in Directed Graphs 

We assume that the graph is represented as an adjacency structure, that is, for every vertex v there 
is a set ad!(v)  which is the set of vertices reachable by following one edge out of v. Let V be the 
set of vertices in the graph, and let E be the set of edges. To do a depth first search we keep two 
pieces of information associated with each vertex v. One is a the depth first search numbering, 
num(v), and the other is mark(v) ,  which indicates that v is currently on the recursion stack. 

Here is the depth first search procedure: 

i t 0  
for all x E V do num(v) t 0 
for all x E V do mark(v) t 0 
for all x E V do 

if num(z) = 0 then DFS(x) 

DFS(w) 
i t i + l  
num(v) t 2 

mark(v)  t 1 
for all w E adj(v) do 

if num(w) = 0 then DFS(w) 
else if num(w) > num(v) then 
else'if mark(w)  = 0 then 
,else 

mark(v)  t 0 
end DFS 

[(v, w) is a tree edge J 
[(v, w) is a forward edge ] 
[(v,w) is a cross edge] 
[(v,w) is a back edge] 
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This process examines all edges and vertices. The call DFS(v) is made exactly once for each 
vertex of the graph. Each edge is placed into exactly one of four classes by the algorithm: tree 
edges, forward edges, cross edges, and back edges. 

This classification of the edges is not a property of the graph alone. It also depends on the 
ordering of the vertices in adj(v)  and on the ordering of the vertices in the loop that calls the DFS 
procedure. The num and mark fields are not actually necessary to accomplish a complete search 
of the graph. All that is needed to do that is a single bit for each vertex that indicates whether or 
not that vertex has already been searched. (This bit is zero for vertex v if and only if num(v) = 0). 
The depth first labeling (the num field) has some very useful properties that we shall make use of. 

The tree edges have the property that either zero or one of them points to a given vertex. 
Therefore, they define a collection of trees, called the depth-first spanning forest of the graph. The 
root of each tree is the lowest numbered vertex in it (the one that was searched first). These rooted 
trees allow us to define the ancestor and descendant relations among vertices. The four types of 
edges are related to the spanning forest as follows: 

The forward edges are edges.from a vertex to a descendant of it that are not tree edges. This 
is because the test num(w)  > num(v) indicates that w was explored after the call to DFS(v). 
Since the call to DFS(v) is not yet complete 20 must be a descendant of v. 

The cross edges are edges from a vertex v to a vertex 20 such that the subtrees rooted at v 
and w are disjoint. This follows because marlc(w) = 0 so the exploration of w is complete, 
and was complete before the call to DFS(v). Therefore is not in a subtree rooted at w. 
Vertex w is not in a subtree rooted at v because num(w)  < nurn(v). 

The back edges are edges from a vertex to an ancestor of it. The fact that marlc(w) = 1 
indicates that the w is on the recursion stack and is thus an ancestor of v. 

Below is an example of a graph and a corresponding depth first spanning forest. 

We shall repeatedly make use of one very general property of the depth-first numbering of the 
graph. This is embodied in the following lemma. 

Lemma 1 Let T, be the subtree of the spanning forest rooted at v, and define T, similarly. Suppose 
that T, and T, are disjoint. Then all the depth-first numbers in T, are greater than all of those in 
T, or all the depth-first numbers in T, are less than all of those in Tw. Furthermore, i f  there is an 
edge from a vertex in T,' to a vertex in Tw then all of the depth first search numbers in T, are less 
than all of them in T,. 
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Proof. The first part follows as an immediate consequence of the fact that the depth first search 
algorithm always finishes searching a subtree of a vertex before going on to any other disjoint 
subtree. This also proves the second part, because the only way there could be an edge from T! to 
T,, and for these two subtrees to be disjoint is if Tw had been completely searched before vertex v 
was searched, so Tw has lower numbered vertices than T,,. El 

3. Strong Components 

Two vertices v and w are equivalent, denoted v = w if there exists a path from v to w and one 
from w to v. The relation “s” so defined is an equivalence relation because it satisfies the following 
three properties: 

Reflexivity: 

Symmetry: 

Transitivity: 

w = w. This is because a path of length zero goes from w to w and vice versa. 

If w E w then w 3 v. This follows immediately from the definition. 

If v E w and w 3 z then v = z ,  If there is a path from v to w, and one from w 
to z, then there is a path from v to z. The same reasoning shows that there is 
a path from 2 to w. 

This equivalence relation induces a partitioning of the vertices of the graph into components in 
which each pair of vertices in a component are equivalent. These are called the strongly connected 
components or strong components of the graph. Our goal is to devise an algorithm which will 
compute the strong components of a graph. 

Here is an example of a directed graph partitioned into its strong components. 

There 

/- -- 

the depth first 
spanning forest of the graph. We shall present an algorithm that uses depth first search to find the 
strong components of the graph. The algorithm augments slightly the depth first search described 
above. These changes do not effect the depth-first spanning forest or the classification of edges 
described above. 

To simplify the proof of correctness of the algorithm, we assume that there is a vertex R in the 
graph from which there are edges to each other vertex. (If there is no such vertex then we can add 
one. The other strong components remain unchanged by the addition of R and its edges.) This 
vertex is in its own strong component, since there is no path to it from any other vertex. Let the 
depth first search begin from R. Now there is only one tree in the depth first spanning forest. (The 
algorithm we show later does not assume the existence of R. In fact the algorithm as stated works 
correctly without this assumption.) 
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DefinitionA vertex is called a base of a strong component i f  it has the lowest depth-first search 
number (num field) of any vertex in the strong component. 

Lemma 2 Let b be the base of a strong component X .  Then for all v E X ,  v is a descendant of b, 
and all vertices on the path from b to v are in X. 

Proof. First we prove the first part. Let v be any vertex besides b in X .  We know that either (1) v 
descends from b, or (2) b descends from v, or (3) neither of the above. (2) is impossible, because if 
b descended from v, then its depth-first number would be greater than v's, which contradicts the 
assumption that b is a base. 

Suppose (3). There must be a path from b to v,  because they are in the same strong component. 
Consider one such path, p ,  and let r be the least common ancestor of all the vertices on the path. 
(In other words, r is the vertex such that all the vertices on the path descend from it, but this 
property does not hold for any of its descendants. Since there is only one tree in the spanning 
forest there must be such a vertex.) 

We claim that r must be on the path p .  To prove this seems to require two cases. 

Case 1: b and v descend from different children of r .  

Let Tb be the subtree containing b and let Tv be the subtree containing 21. Since num(b) < num(v) 
and Tb and Tv are disjoint, there cannot be any edge from a vertex in Tb to one in Tv. This follows 
from Lemma 1. Therefore the only way path p can get from b to v is by going through r. 

Case 2: b and v descend from the same child of r. 

Suppose that the path p does not contain r .  Then the path must touch the subtrees of at least 
two distinct children of r .  (If not, then a child of r would be a lower common ancestor than r of 
the path p.) Call the subtrees rooted at the children of r 2'1, T2,. . . ,Tk. Assume without loss of 
generality that TI contains b and v. Path p starts in TI goes through a sequence of subtrees of r ,  
then returns to TI. Each time the path changes from one subtree to another, all of the numbers 
in the new subtree must be less than all those of the old subtree, by Lemma 1. So it is impossible 
for such a path to return to 2'1. The conclusion is that the path must go through r .  

Ok, so the path goes through r ,  so what? Well, since r is an ancestor of b, its depth-first search 
number is less than that of b. It is also in the same strong component as b because there is a 
path from b to r and a path (along tree edges) from r to b. But b was supposed to be the lowest 
numbered vertex in the strong component. This shows that (3) is impossible. 

Of the three original alternatives, only (1) is left. Therefore v is a descendant of b. 
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The second part of the lemma is now trivial. Let x be a vertex on the path from v to b. There 
is a path from b to x (via tree edges). There is also a path from x to b by first going from x to v 

0 then, from v to b. Therefore x is in the same strong component as b. 

Lemma 3 Let b be a base vertex. Let bl ,  ba, . . . , bk be all of the base vertices that descend from b. 
Then b’s strong component is the set of vertices descending from b but not descending from any of 
b l ,  b2, * * , b k .  

Proof. Assume the contrary, i.e. that there is a vertex, v, in the same strong component as b and 
which descends from b and bi. There must be a path from v to b. There also a path from b to bi to 
v (following tree edges). Therefore b and bi are in the same strong component, which contradicts 

0 the assumption that b and bi are bases of distinct strong components. 

Definition: Let lowlink(v) be the minimum numbered vertex in the same strong component as 
v that can be reached from v by  following in zero more tree edges followed by  at most one back or 
cross edge. 

Lemma 4 A vertex v is a base if and only if num(v) = ZowZink(v) 

Proof. We first assume that num(v) > ZowZink(v) and prove that v is not a base. Be definition of 
ZowZink, there is a vertex w in the same strong component of v such that ZowZink(v) = num(w). 
Therefore num(v) > num(w), and v cannot be a base. 

To prove the converse, assume that v is not a base. Let b be the base of the strong component 
containing w. Then there must be a path p from v to b. By Lemma 2 b must be an ancestor of w. 
Let y be the first vertex along the path p that is not in the subtree rooted at v, and let x be the 
vertex before y on the path. Because the subtree rooted at y is disjoint from that rooted at w ,  and 
there is an edge from a descendant of v (namely x )  to y ,  we can apply Lemma 1 and conclude that 
num(y) < num(v). This shows that lowZink(v) 5 num(y), since y is in the same strong component 
as v and is reachable by following tree edges, then one back or cross edge. Combining this with 

0 the fact that num(y) < num(v) gives Zowlink(v) < num(v). 

4. The Strong Components Algorithm 

We can now present the algorithm for computing strong components. A stack S containing a 
particular set of vertices is maintained by the algorithm. 
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S t empty stack 
i t 0  
for all x E V do num(v) t 0 
for all x E V do 

if num(x) = 0 then STRONG(x) 

STRONG(v) 
i t i + l  

lowZink(v) t i 
push v onto the stack S 
for all w E adj (v)  do 

num(v) t i 

if num(w) = 0 then 
STRONG(w) 
lowlink( v) t min(lowlink( v), lowlink( w)) 

i f w E S  

[(v, w) is a tree edge ] 

else if num(w) < num(v) then [(v, w) is a back or cross edge ] 
[w is in the same strong component as v] 

[v is a base vertex] 
then lowZink(v) t min(Zowlink(v), num(w)) 

if Zowlink(v) = num(v) then 
pop vertices off the stack while num(stack top)> num(v) 
all those vertices popped off the stack are output as a strong component 

end STRONG 

To begin to prove that this algorithm is correct, we first show something about the state of the 
stack. 

Lemma 5 It is always the case that if x , y  E S and num(x) < num(y) then there exists a path 
from x to y .  

Proof. We use induction. We need concern ourselves only with the case when new vertices are 
added to S. Suppose that within the call to STRONG(v) a call is made to STRONG(w) that adds 
w to S. Assume that the lemma held before this. 

Since num(w) is larger than any other we need only consider the vertices x such that num(x) < 
num(w). If x = v than the lemma still holds since there is an edge from to w. If not, then since 
v was in S before, by the induction hypothesis there is a path from z to w. Combining this with 

0 the edge from v to w gives a path from x to w, finishing the proof. 

Theorem: After the call to STRONG(v) is complete it is the case that: 

(1) lowZink(v) has been correctly computed. 

(2) All the strongly connected components contained in the subtree rooted at v have been 
0 21 t p  u t . 

Proof. Assume that all the prior completed recursive calls to STRONG satisfy (1) and (2). We’ll 
show that this call does also. 

First we show (1) is true in the current call (assuming (1) and (2) are satisfied for all prior 
completed calls) then we use this (and all prior (1)’s and (2)’s) to show (2).  
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Clearly ZowZink(v) is computed correctly assuming one thing: the test w E S is satisfied exactly 
when w is in the same strong component as w. If w E S then by Lemma 5 there exists a path from 
w to w. This, combined with edge (v ,w)  ensures that w and w are in the same strong component. 
If w tif S then since num(w) < num(v) the recursive call to w must have been completed and 
the strong component containing w has been output. This strong component has been correctly 
computed by induction hypothesis (2). 

We now show (2). By the proof just given, when the output phase is reached, ZowZink(v) has 
been correctly computed. By Lemma 4 w is a base vertex. 

The ensuing loop pops everything from the end of the stack (including w )  into a strong com- 
ponent. These vertices are exactly those that are descendants of w but not in another strong 
component (here we’re using induction hypothesis (2)). By Lemma 3, this is the strong component 
with v as a base. 0 

We would like to withdraw our assumptions that the graph has a vertex R connected to all 
other vertices, and R is searched first by the algorithm. Compare the following two alternatives: 
(1) Run the above algorithm on a graph G, or (2) add a new vertex R to G with an edge to all other 
vertices, and run the search above by calling STRONG(&). By syntatic analysis of the program 
above, it is easy to see that the these two processes will differ only in that (2) will output one extra 
strong component at the end (the one consisting of R). This is because while running (2), inside 
the call to STRONG(R), the loop through the vertices adjacant vertices of R will behave exactly 
like the loop on the outside running in (1). 

It is tempting to consider what happens to the algorithm if the line: 

“lowlink (w ) t min(Zowlink (w ) , num (w) )” 

Is replaced by: 

“ZowZink(v) t min(ZowZink(v), ZowZink(w))” 

This new,ZowZink function is not the same as the old one, yet the algorithm will still work. 

Lemma 6 The modified strong components algorithm works. 

Proof. Let ZZ(w) be the new ZowZink function. (That is, change the line indicated above, then 
replace ZowZink by ZZ everywhere in the program.) Since ZowZink(z) 5 num(z) this change can only 
decrease the function, that is ZZ(z) 5 ZowZink(z). Our goal is to show that the test ZowZink(v) = 
num(w) is true in the running of the original algorithm exactly when U(v) = num(v) in the running 
of the new algorithm. 

One way is easy. If the test ZZ(v) = num(v) is satisfied, then it must be the case that in the 
running of the original algorithm the test ZowZink(v) = num(v) is also satisfied, because lowZink(w) 
is trapped between lZ(v) and num(v). 

Conversely suppose that ZowZink(v) = num(w), that is, that w is a base vertex. Our goal 
is to show that lZ(w) = jowZink(v). The reason is that even though U(z) can be smaller than 
lowZink(z), its value,is still the depth first number (num field) of of another vertex in the same 
strong component as z. If w is a base vertex there is no other vertex in the same strong component 
as 21 with a smaller num field. Therefore in this case Zl(v) = ZowZink(v), which completes the proof. 

0 
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