

Web Sites

www.cs.cmu.edu/afs/cs/academic/class/15451-s14 Calendar, Slides, Notes, Homeworks, Course Policy, Grades, …

http://piazza.com/

Questions, Comments, Announcements, …

Textbook

There is no textbook.

Slides will be posted on the website.

Some supplementary notes will also be posted.

Grading

30% Homework (weekly) 10% Quizzes (weekly) 30% Tests (3 midterms) 30% Final

Homework

Homeworks roughly every week

Approx: 8 written and 3 oral

4 late days for written Hwks 2 late days at most per Hwk

We will drop the lowest written Hwk

Collaboration

You may work in a group of ≤ 3 people.

You *must* report who you worked with.

You must think about *each of the problems* <u>by</u> yourself for ≥ 30 minutes before discussing them with others.

You must write up *all* solutions by yourself.

Cheating

You MAY NOT

Share written work.

Get help from anyone besides your collaborators, staff.

Refer to solutions/materials from earlier versions of 251 or the web

Quizzes

Every week, in recitation

Tested on material from the previous 2-3 lectures.

These are designed to be easy, assuming you are keeping up with the lectures.

We will drop 2 lowest quizzes

Midterm Tests

There will be 3 tests given in the evening.

Designed to be doable in 1 hour.

You will have 1.5 hours.

"Semi-cumulative."

We will drop the lowest score.

Course Goals

Algorithms

- 1. Understand
	- a) Algorithms
	- b) Design techniques
- 2. Analyze algorithm efficiency
- 3. Analyze algorithm correctness
- 4. Communicate about code
- 5. Design your own algorithm

Divide and Conquer

- A divide-and-conquer algorithm consists of
- dividing a problem into smaller subproblems
- solving (recursively) each subproblem
- then combining solutions to subproblems to get solution to original problem

Runtime Suppose T(n) is the number of steps in the worst case needed to solve the problem of size n. Let us split a problem into a>1 subproblems, each of which is of the input size n/b where b>1**.** $T(n) = T(n/2) + 1$ Merge sort Binary search The recurrences have some initial conditions $T(n) = 2T(n/2) + n$

Runtime

The total complexity $T(n)$ is obtained by all steps needed to solve smaller subproblems T(n/b) plus the work needed f(n) to combine solutions into a final one.

$$
T(n) = a \cdot T(n/b) + f(n)
$$

The Master Theorem
\n
$$
T(n) = \begin{cases}\n\Theta(n^{\log_b a}), \text{ if } f(n) \in O(n^{\log_b a - \delta}) \\
\Theta(n^{\log_b a} \log^p n), \text{ if } f(n) \in O(n^{\log_b a} \log^{p-1} n) \\
\Theta(f(n)), \text{ if } f(n) \in \Omega(n^{\log_b a + \delta})\n\end{cases}
$$
\nfor some constant δ > 0 and δ \to 0
\nand constant p = 1, 2, ...

Case I
\nif
$$
f(n) \in O(n^{\log_b a - \delta})
$$
, then $T(n) = O(n^{\log_b a})$
\nProof. The solution to the recurrence is
\n
$$
T(n) = \theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})
$$
\nWe simplify the sum in the rhs
\n
$$
\sum_{k=0}^{h-1} a^k f(\frac{n}{b^k}) \le c \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a - \delta} = c n^{\log_b a - \delta} \sum_{k=0}^{h-1} \left(\frac{a}{b^{\log_b a}}\right)^k b^{\delta k} =
$$
\n
$$
= c n^{\log_b a - \delta} \sum_{k=0}^{h-1} b^{\delta k} \le c n^{\log_b a - \delta} \sum_{k=0}^{\infty} b^{\delta k} \le c_1 n^{\log_b a - \delta}
$$
\nsince $b^{\delta} < 1$. It follows that
\n
$$
T(n) = \theta(n^{\log_b a})
$$
 QED

Case II
\nif
$$
f(n) \in \Theta(n^{\log_b a} \log^{p-1} n)
$$
, then $\Theta(n^{\log_b a} \log^p n)$
\nProof. We prove this for p=1. The solution to the
\nrecurrence is
\n
$$
T(n) = \Theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})
$$
\nWe simplify the sum in the rhs
\n
$$
\sum_{k=0}^{h-1} a^k f(\frac{n}{b^k}) = \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_a a} = n^{\log_b a} \sum_{k=0}^{h-1} 1 =
$$
\n
$$
= h n^{\log_b a} = n^{\log_b a} \log_b n
$$
\nIt follows that
\n
$$
T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log_b n) = \Theta(n^{\log_b a} \log n) \quad QED
$$

Example - 1

\n
$$
T(n) = \begin{cases} \n\Theta(n^{\log_b a} \log^p n) \\ \n\Theta(f(n)) \n\end{cases}
$$
\n
$$
T(n) = 4 T(n/2) + n
$$
\nWork at leaves is $n^{\log_b a} = n^{\log_2 4} = n^2$

\n
$$
f(n) = n \qquad f(n) = O(n^2)
$$
\nIt follows, $T(n) \in \Theta(n^2)$

Example - 2

\n
$$
T(n) = \begin{cases} \n\Theta(n^{\log_b a}) \\ \n\Theta(n^{\log_b a} \log^p n) \\ \n\Theta(f(n)) \n\end{cases}
$$
\nWork at leaves is $n^{\log_b a} = n^{\log_2 4} = n^2$

\nfor $n = 1$, $n = 1$, $n = 1$, $n = 2$

\nThus, $T(n) \in \Theta(n^2)$

\nIt follows, $T(n) \in \Theta(n^2 \log n)$

$$
T(n) = 2T(n/3) + 1
$$

Example:

$$
T(1) = 1
$$

$$
T(n) = n^{\log_3 2} + \sum_{k=0}^{h-1} 2^k
$$

$$
T(n) = n^{\log_3 2} + 2^h - 1
$$

$$
T(n) = -1 + 2 \cdot n^{\log_3 2}
$$

Integer Multiplication

Given two n-digit integers. Using a grammar school approach, we can multiply them in Θ (n²) time.

Observe, any integer can be split into two parts

154517766 = 15451 * 10⁴ + 7766

Is it always possible to reduce k^2 multiplications to 2k-1?

Consider k-way split

$$
polyn_1 = a_{k-1} \times {}^{k-1}a_{k-2} \times {}^{k-2}+...+a_1 \times {}^{k}a_0
$$

$$
polyn_2 = b_{k-1} \times {}^{k-1}+b_{k-2} \times {}^{k-2}+...+b_1 \times {}^{k}a_0
$$

polyn₁*polyn₂ = a_{k-1} b_{k-1}* x^{2k-2} + ... + $(a_1 b_0 + b_1 a_0)^* x + a_0 b_0$

It has 2k-1 coefficients, which uniquely define a polynomial. Therefore, it requires 2k-1 new variables, thus we should have at least 2k-1 multiplications.

