

Outline

- 1. Administria
- 2. The Master Theorem
- 3. Karatsuba's Algorithm

Victor Adamchik

Gary Miller

Course Staff

TAs

Laxman Dhulipala Eugene Choi Shen Chen Xu (Ph.D.)

Web Sites

www.cs.cmu.edu/afs/cs/academic/class/15451-s14 Calendar, Slides, Notes, Homeworks, Course Policy, Grades, ...

http://piazza.com/

Questions, Comments, Announcements, ...

Textbook

There is no textbook.

Slides will be posted on the website.

Some supplementary notes will also be posted.

Grading

30% Homework (weekly)

10% Quizzes (weekly)

30% Tests (3 midterms)

30% Final

Homework

Homeworks roughly every week

Approx: 8 written and 3 oral

4 late days for written Hwks 2 late days at most per Hwk

We will drop the lowest written Hwk

Collaboration

You may work in a group of ≤ 3 people.

You *must* report who you worked with.

You must think about <u>each of the problems by</u> <u>yourself</u> for ≥ 30 minutes before discussing them with others.

You must write up all solutions by yourself.

Cheating

You MAY NOT

Share written work.

Get help from anyone besides your collaborators, staff.

Refer to solutions/materials from earlier versions of 251 or the web

Quizzes

Every week, in recitation

Tested on material from the previous 2-3 lectures.

These are designed to be easy, assuming you are keeping up with the lectures.

We will drop 2 lowest quizzes

Midterm Tests

There will be 3 tests given in the evening.

Designed to be doable in 1 hour.

You will have 1.5 hours.

"Semi-cumulative."

We will drop the lowest score.

Course Goals

- 1. Understand
 - a) Algorithms
 - b) Design techniques
- 2. Analyze algorithm efficiency
- 3. Analyze algorithm correctness
- 4. Communicate about code
- 5. Design your own algorithm

Divide and Conquer

A divide-and-conquer algorithm consists of

- · dividing a problem into smaller subproblems
- · solving (recursively) each subproblem
- then combining solutions to subproblems to get solution to original problem

Runtime

Suppose T(n) is the number of steps in the worst case needed to solve the problem of size n.

Let us split a problem into a>1 subproblems, each of which is of the input size n/b where b>1

$$T(n) = 2T(n/2) + n$$

$$T(n) = T(n/2) + 1$$

Algorithms

Merge sort

Binary search

The recurrences have some initial conditions

Runtime

The total complexity T(n) is obtained by all steps needed to solve smaller subproblems T(n/b) plus the work needed f(n) to combine solutions into a final one.

$$T(n) = a \cdot T(n/b) + f(n)$$

Tree method: $T(n) = a \cdot T(n/b) + f(n)$

This tree represents the total work:

$$T(n) = a \cdot T(n/b) + f(n)$$

$$T(1) = O(1)$$

$$f(n)$$

$$a \text{ calls}$$

$$a^2 \text{ f(n/b^2)}$$

$$a^2 \text{ f(n/b^2)}$$

$$a^2 \text{ constant work at leaves!}$$

The Master Theorem

$$T(n) = T(1) n^{\log_b a} + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})$$

where $h = log_b n$

$$T(n) = \begin{cases} \Theta(n^{log_b a}) & \text{Leaves dominate} \\ \Theta(n^{log_b a} \log^p n) & \text{Both} \\ \Theta(f(n)) & \text{Internal nodes} \\ & \text{dominate} \end{cases}$$

It (all) depend on the function f(x) - a combining step

The Master Theorem

$$T(n) = \begin{cases} \Theta(n^{log_ba}), \text{ if } f(n) \in O(n^{log_ba-\delta}) \\ \Theta(n^{log_ba} \ log^p n), \text{ if } f(n) \in \Theta(n^{log_ba} \ log^{p-1} \ n) \\ \Theta(f(n)), \text{ if } f(n) \in \Omega(n^{log_ba+\delta}) \end{cases}$$

for some constant $\delta \text{>} \text{0}$ and $\delta \text{\to} \text{0}$

and constant p = 1, 2, ...

Case I

if
$$f(n) \in O(n^{\log_b a - \delta})$$
, then $T(n) = \Theta(n^{\log_b a})$

Proof. The solution to the recurrence is

$$T(n) = \theta(n^{log_b \alpha}) + \sum_{k=0}^{h-1} \alpha^k f(\frac{n}{b^k})$$

We simplify the sum in the rhs

$$\begin{split} \sum_{k=0}^{h-1} \alpha^k f(\frac{n}{b^k}) &\leq c \sum_{k=0}^{h-1} \alpha^k \bigg(\frac{n}{b^k}\bigg)^{log_b \alpha - \delta} = c \, n^{log_b \alpha - \delta} \sum_{k=0}^{h-1} \bigg(\frac{\alpha}{b^{log_b \alpha}}\bigg)^k b^{\delta \, k} = \\ &= c \, n^{log_b \alpha - \delta} \sum_{k=0}^{h-1} b^{\delta \, k} \leq c \, n^{log_b \alpha - \delta} \sum_{k=0}^{\infty} b^{\delta \, k} \leq c_1 \, n^{log_b \alpha - \delta} \end{split}$$

since $b^{\delta} < 1$. It follows that

$$T(n) = \theta(n^{\log_b a})$$
 QED

if
$$f(n) \in \Theta(n^{\log_b a} \log^{p-1} n)$$
, then $\Theta(n^{\log_b a} \log^p n)$

Proof. We prove this for p=1. The solution to the recurrence is

$$T(n) = \theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f(\frac{n}{b^k})$$

We simplify the sum in the rhs

$$\sum_{k=0}^{h-1} a^k f(\frac{n}{b^k}) = \sum_{k=0}^{h-1} a^k \bigg(\frac{n}{b^k}\bigg)^{log_b a} = n^{log_b a} \sum_{k=0}^{h-1} 1 =$$

$$=h n^{log_b a} = n^{log_b a} log_b n$$

It follows that

$$T(n) = \theta(n^{\log_b a}) + \theta(n^{\log_b a} \log_b n) = \theta(n^{\log_b a} \log n) \quad \text{QED}$$

Example - 1
$$T(n) = \begin{cases} \Theta(n^{log_b a}) \\ \Theta(n^{log_b a} log^p n) \\ \Theta(f(n)) \end{cases}$$

$$T(n) = 4 T(n/2) + n$$

Work at leaves is $n \log_b a = n \log_2 4 = n^2$

$$f(n) = n$$
 $f(n) = O(n^2)$

It follows, $T(n) \in \Theta(n^2)$

Example - 2
$$T(n) = \begin{cases} \Theta(n^{\log_b a}) \\ \Theta(n^{\log_b a} \log^p n) \\ \Theta(f(n)) \end{cases}$$

$$T(n) = 4 T(n/2) + n^2$$

Work at leaves is $n \log_b a = n \log_2 4 = n^2$

$$f(n) = n^2$$
 $f(n) \in \Theta(n^2)$

It follows, $T(n) \in \Theta(n^2 \log n)$

Example - 3
$$T(n) = \begin{cases} \Theta(n^{log_b a}) \\ \Theta(n^{log_b a} \log^p n) \\ \Theta(f(n)) \end{cases}$$

$$T(n) = 4 T(n/2) + n^3$$

Work at leaves is $n \log_b a = n \log_2 4 = n^2$

$$f(n) = n^3$$
 $f(n) \in \Omega(n^2)$

It follows, $T(n) \in \Theta(n^3)$

Example:
$$T(n) = 2T(n/3) + 1$$

 $T(1) = 1$

Draw a tree of recursive calls:

Example:
$$T(n) = 2T(n/3) + 1$$

$$T(1) = 1$$

$$T(n) = n^{\log_3 2} + \sum_{k=0}^{h-1} 2^k$$

$$T(n) = n^{\log_3 2} + 2^h - 1$$

$$T(n) = -1 + 2 * n^{\log_3 2}$$

Karatsuba's Algorithm (1962)

Fast integer multiplication

Integer Multiplication

Given two n-digit integers. Using a grammar school approach, we can multiply them in Θ (n²) time.

Observe, any integer can be split into two parts

154517766 = 15451 * 10⁴ + 7766

Integer Multiplication: divide-and-conquer

$$num_1 = x_1 * 10^p + x_0$$

x₁ **x**₀

$$num_2 = y_1 * 10^p + y_0$$

p=n/2

$$num_1 * num_2 = x_1*y_1*10^{2p} + (x_1*y_0+x_0*y_1)*10^p + x_0*y_0$$

The worst-case complexity:

by the master theorem

$$T(n) = 4T(n/2) + O(n)$$
 $T(n) = \Theta(n^2)$

Karatsuba's Algorithm

 $num_1 * num_2 = x_1*y_1*10^{2p} + (x_1*y_0+x_0*y_1)*10^p + x_0*y_0$

$$num_1 * num_2 = (x_1 * y) * 10^{2p} + ((x_1 + x_0) * (y_1 + y_0) - (x_1 * y_1) - (x_0 * y_0) * 10^p + (x_0 * y_0)$$

The worst-case complexity:

$$T(n) = 3T(n/2) + O(n) \quad \text{by the master theorem} \\ T(n) = \Theta(n^{\log 3}) = \Theta(n^{1.58})$$

3-way splitting

The key idea is to divide a large integer into 3 parts (rather than 2) of size approximately n/3 and then multiply those parts.

This is similar to 3-way merging.

The worst-case: (x is unknown)

$$T(n) = x \cdot T(n/3) + O(n)$$

by the master theorem $T(n) = \Theta(n^{\log_3 x}) = O(n^{1.58})$

 $\log_3 x < 1.58$

x = 5

Thus we need to reduce 9 mults to 5

Is it possible to reduce a number of multiplications from 9 to 5?

3-way split T. Cook (1966)

 x_2 x_1 x_0

y₂ y₁ y₀

 $Z_0 = x_0 y_0$ $Z_1 = (x_0 + x_1 + x_2) (y_0 + y_1 + y_2)$ $Z_2 = (x_0 + 2 x_1 + 4 x_2) (y_0 + 2 y_1 + 4 y_2)$ $Z_3 = (x_0 - x_1 + x_2) (y_0 - y_1 + y_2)$ $Z_4 = (x_0 - 2 x_1 + 4 x_2) (y_0 - 2 y_1 + 4 y_2)$

Further Generalization: k-way split splits Number of multiplications T(n) = (2k-1)T(n/k) + n2 3 $T(n) = n^{\log_k(2k-1)}$ 4 7 $n^{1.58}, n^{1.46}, n^{1.40}, n^{1.36}, n^{1.33}, n^{1.31}, n^{1.30}, n^{1.28}...$

Is it always possible to reduce k² multiplications to 2k-1?

Consider k-way split

polyn₁ =
$$a_{k-1} \times^{k-1} + a_{k-2} \times^{k-2} + ... + a_1 \times^{k-1} + a_0$$

polyn₂= $b_{k-1} \times^{k-1} + b_{k-2} \times^{k-2} + ... + b_1 \times^{k-1} + b_0$

$$\begin{aligned} \text{polyn}_1 * \text{polyn}_2 &= a_{k-1} \ b_{k-1} * x^{2k-2} + ... + \\ & (a_1 \ b_0 + b_1 \ a_0) * x + a_0 \ b_0 \end{aligned}$$

It has 2k-1 coefficients, which uniquely define a polynomial. Therefore, it requires 2k-1 new variables, thus we should have at least 2k-1 multiplications.

