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Strassen’s Algorithm 
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Victor Adamchik CS 15-451       Spring 2014 
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Matrix Multiplication 

Let A and B be nxn matrices, then their 
product C=A*B is 
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What is the complexity of this 
algorithm (in terms of 

multiplications)? 

 

O(n3) 
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The idea is to divide the size of the problem in 
half. This corresponds to dividing each of 
the matrices into quarters, each n/2 x n/2 

size, and multiply those quarters. 

Algorithm 

1. if A is 1x1 matrix, return a11 * b11. 
 

2. write 
 

where Aij and Bij are n/2 x n/2 matrices. 

3. Compute Cij = M(Ai1,B1j) + M(Ai2,B2j) 

4. Return 
 

Let n = 2k and M(A,B) denote the matrix product 
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Correctness 

This basically says that if the entries of A and B 
are themselves matrices, the usual matrix 
multiplication works by substituting the blocks into 
the formula.  
 
Let us prove it for the left upper entry.  
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Correctness 
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Since 1 ≤ i,j ≤ n/2. 

j))(i,B(Aj))(i,B(A 21121111 

Similar proof for the other blocks. 
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Worst-case complexity 

Cij = M(Ai1,B1j) + M(Ai2,B2j) 

On each step we compute 4 matrices Cij, each 
requires two recursive calls. 
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Let T(n) denote the number of multiplications, then 

Matrix 
addition 

The Master Theorem gives Θ(n3). 

Strassen’s Algorithm  (1968) 

Do we need all 8 multiplications or 
can we find a clever way of doing it 

with fewer? 

Strassen  a German mathematician  

born in 1936 

Strassen’s Algorithm 

For 2 x 2 matrices 
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s1 = (a12-a22) (b21+b22) 
s2 = (a11+a22) (b11+b22) 
s3 = (a11-a21) (b11+b12) 
s4 = (a11+a12) b22 

s5 = a11 (b12-b22) 
s6 = a22 (b21-b11) 
s7 = (a21+a22) b11 

It takes 7 
multiplications 

Correctness 

Proof for a lower left entry: 

s6 = a22 (b21-b11) 
s7 = (a21+a22) b11 

s6+s7 = a21 b11 + a22 b21   

s6+s7 = a22 (b21-b11) + (a21+a22) b11 = 
a22 b21 - a22 b11 + a21 b11  + a22 b11 = a21 b11  + a22 b21 
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Strassen’s Algorithm 

This holds for a block matrix multiplication 

where Aij and Bij are n/2 x n/2 matrices 
and matrices S1, …., S7 are defined on the 
previous slide. 
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Worst-case complexity 

Let T(n) denote the number of multiplications, then 

Matrix 
addition 

The Master Theorem gives Θ(nlog 7) = Θ(n2.807). 
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If we count additions, then 
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Time complexity 

Space Complexity 

We need to compute 
and then store 
matrices S1, …, S7 

S1 = (A12-A22)(B21+B22) 
S2 = (A11+A22)(B11+B22) 
S3 = (A11-A21)(B11+B12) 
S4= = (A11+A12) B22 

S5 = A11 (B12-B22) 
S6 = A22 (B21-B11) 
S7 = (A21+A22) B11 

To compute them we 
need two scratch 
arrays, so 9 total. 
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Space Complexity 

Let W(n) be the space complexity 

Solving this gives  W(n) =3 n2. 

1W(1)
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How would you extend Strassen’s 
algorithm to matrix dimensions 

differ from 2k? 

 

Pad the matrices with zeros. 

 

How would you multiply two 
polynomials? 

Polynomial Multiplication 
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Polynomial Multiplication 

This has O(n2) complexity. We can do much better! 
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Karatsuba Revisited 

For example, 
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1 + 3x + x2 + 7x3 = (1 + 3x) + x2 (1+7x) 

Same for B(x) 
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Polynomial Multiplication 

Karatsuba’s polynomial multiplication can be 
done with at most O(nlog3) operations. 

Observe, the algorithm in fact multiplies only 
linear polynomials (2 terms) with three scalar 
multiplications. 

In the next slides we outline a slightly 
different approach that is based on 
interpolation. 

Interpolation 

Say you’re given a bunch of “data points” 

x1 

y1 

(x2,y2) (x3,y3) 

(x4,y4) 

(x5,y5) 

Can you find a (low-degree) polynomial which “fits the 

data”? 

Interpolation 

There is a unique linear polynomial going 

through 2 points  

(x2,y2) 

Correspondence between a set of 2 points and a line 

(a polynomial of the first order) 

(x1,y1) 
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Theorem:   

 There is exactly one polynomial P(x)  

    of degree at most n such that  

 P(ak) = bk for all k = 0, … , n. 

Uniqueness 

Correspondence between a set of points  

and a polynomial 
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Multiplication by Interpolation 

Let us multiply polynomials of degree one 

A(x) = a0 + a1 x,    B(x) = b0 + b1 x 

Suggested points for evaluation: 0, 1,  

A(0) = a0, A(1) = a0 + a1, A() = a1  

B(0) = b0, B(1) = b0 + b1, B() = b1  

c0  = a0 b0,  c1 = (a0 + a1)(b0 + b1),  c2 = a1 b1  

Compute: 

Find a polynomial passing through these points! 

 means, take 
the leading 
coefficient 

Karatsuba again… 

Find a polynomial passing through these points 

(0, a0 b0), (1, (a0 + a1)(b0 + b1)), (, a1 b1)  

Clearly it must be a quadratic polynomial 

c0 + c1 x + c2 x2 

Setting x = 0, gives that c0 = a0 b0  

Setting x = , gives that c2 = a1 b1  

Setting x = 1, gives that c0 + c1 + c2 = (a0 + a1)(b0 + b1)  

It follows, c1 = (a0 + a1)(b0 + b1) - a0 b0 - a1 b1  

Wow, exactly like in Karatsuba’s algorithm 

Toward  to the 
Fast Fourier Transform 

To compute the polynomial product A(x)B(x),  
 

1) evaluate A(x) and B(x) at some points xk,  

2) multiply A(xk)B(xk),  

3) then find the polynomial which passes through 
these points. 


