
1

Strassen’s Algorithm

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 2 Jan 15, 2014 Carnegie Mellon University
Matrix Multiplication

Let A and B be nxn matrices, then their
product C=A*B is





n

1k
kjikij bac

A B C = AxB































2222122121221121

2212121121121111

2221

1211

2221

1211

babababa

babababa

bb

bb

aa

aa

What is the complexity of this
algorithm (in terms of

multiplications)?

O(n3)





n

1k
kjikij bac Divide and Conquer

The idea is to divide the size of the problem in
half. This corresponds to dividing each of
the matrices into quarters, each n/2 x n/2

size, and multiply those quarters.

Algorithm

1. if A is 1x1 matrix, return a11 * b11.

2. write

where Aij and Bij are n/2 x n/2 matrices.

3. Compute Cij = M(Ai1,B1j) + M(Ai2,B2j)

4. Return

Let n = 2k and M(A,B) denote the matrix product

BB

BB
B

2221

1211











CC

CC

2221

1211










AA

AA
A

2221

1211











Correctness

This basically says that if the entries of A and B
are themselves matrices, the usual matrix
multiplication works by substituting the blocks into
the formula.

Let us prove it for the left upper entry.





n

1k
kjikij bacWe know

BABABABA

BABABABA

BB

BB

AA

AA

2222122121221121

2212121121121111

2221

1211

2221

1211































2

Correctness





n

1n/2k
kjik

n/2

1k
kjik

n

1n/2k
kjik

n/2

1k
kjikij BABAbabac

Since 1 ≤ i,j ≤ n/2.

j))(i,B(Aj))(i,B(A 21121111 

Similar proof for the other blocks.

j))(i,BAB(A 21121111 

BABABABA

BABABABA

BB

BB

AA

AA

2222122121221121

2212121121121111

2221

1211

2221

1211































Worst-case complexity

Cij = M(Ai1,B1j) + M(Ai2,B2j)

On each step we compute 4 matrices Cij, each
requires two recursive calls.

CC

CC

2221

1211










1T(1)

)O(n 8T(n/2) T(n) 2





Let T(n) denote the number of multiplications, then

Matrix
addition

The Master Theorem gives Θ(n3).

Strassen’s Algorithm (1968)

Do we need all 8 multiplications or
can we find a clever way of doing it

with fewer?

Strassen a German mathematician

born in 1936

Strassen’s Algorithm

For 2 x 2 matrices































753276

546421

2221

1211

2221

1211

ssssss

ssssss

bb

bb

aa

aa

s1 = (a12-a22) (b21+b22)
s2 = (a11+a22) (b11+b22)
s3 = (a11-a21) (b11+b12)
s4 = (a11+a12) b22

s5 = a11 (b12-b22)
s6 = a22 (b21-b11)
s7 = (a21+a22) b11

It takes 7
multiplications

Correctness

Proof for a lower left entry:

s6 = a22 (b21-b11)
s7 = (a21+a22) b11

s6+s7 = a21 b11 + a22 b21

s6+s7 = a22 (b21-b11) + (a21+a22) b11 =
a22 b21 - a22 b11 + a21 b11 + a22 b11 = a21 b11 + a22 b21































753276

546421

2221

1211

2221

1211

ssssss

ssssss

bb

bb

aa

aa

Strassen’s Algorithm

This holds for a block matrix multiplication

where Aij and Bij are n/2 x n/2 matrices
and matrices S1, …., S7 are defined on the
previous slide.































753276

546421

2221

1211

2221

1211

SSSSSS

SSSSSS

BB

BB

AA

AA

3

Worst-case complexity

Let T(n) denote the number of multiplications, then

Matrix
addition

The Master Theorem gives Θ(nlog 7) = Θ(n2.807).

1T(1)

 18(n/2) T(n/2)7 T(n) 2





If we count additions, then

1T(1)

)O(n T(n/2)7 T(n) 2





Time complexity

Space Complexity

We need to compute
and then store
matrices S1, …, S7

S1 = (A12-A22)(B21+B22)
S2 = (A11+A22)(B11+B22)
S3 = (A11-A21)(B11+B12)
S4= = (A11+A12) B22

S5 = A11 (B12-B22)
S6 = A22 (B21-B11)
S7 = (A21+A22) B11

To compute them we
need two scratch
arrays, so 9 total.































753276

546421

2221

1211

2221

1211

SSSSSS

SSSSSS

BB

BB

AA

AA

Space Complexity

Let W(n) be the space complexity

Solving this gives W(n) =3 n2.

1W(1)

 9(n/2) W(n/2) W(n) 2





How would you extend Strassen’s
algorithm to matrix dimensions

differ from 2k?

Pad the matrices with zeros.

How would you multiply two
polynomials?

Polynomial Multiplication

4

Polynomial Multiplication

This has O(n2) complexity. We can do much better!





n

0k

k
kxaA(x) 




n

0k

k
kxbB(x)


 




n

0j

n

0k

kj
kj xbaA(x)B(x) C(x)

Karatsuba Revisited

For example,





n

0k

k
kxaA(x) 




n

0k

k
kxbB(x)

1 + 3x + x2 + 7x3 = (1 + 3x) + x2 (1+7x)

Same for B(x)

0
n/2

1
n

2 CxCx CA(x)B(x) 

 BAC

BABA)B)(BA(AC

 BAC

000

110010101

112







where

0
n/2

1 Ax AA(x) 

Polynomial Multiplication

Karatsuba’s polynomial multiplication can be
done with at most O(nlog3) operations.

Observe, the algorithm in fact multiplies only
linear polynomials (2 terms) with three scalar
multiplications.

In the next slides we outline a slightly
different approach that is based on
interpolation.

Interpolation

Say you’re given a bunch of “data points”

x1

y1

(x2,y2) (x3,y3)

(x4,y4)

(x5,y5)

Can you find a (low-degree) polynomial which “fits the

data”?

Interpolation

There is a unique linear polynomial going

through 2 points

(x2,y2)

Correspondence between a set of 2 points and a line

(a polynomial of the first order)

(x1,y1)

12

1

12

1

yy

yy

xx

xx










Theorem:

 There is exactly one polynomial P(x)

 of degree at most n such that

 P(ak) = bk for all k = 0, … , n.

Uniqueness

Correspondence between a set of points

and a polynomial

5

Multiplication by Interpolation

Let us multiply polynomials of degree one

A(x) = a0 + a1 x, B(x) = b0 + b1 x

Suggested points for evaluation: 0, 1, 

A(0) = a0, A(1) = a0 + a1, A() = a1

B(0) = b0, B(1) = b0 + b1, B() = b1

c0 = a0 b0, c1 = (a0 + a1)(b0 + b1), c2 = a1 b1

Compute:

Find a polynomial passing through these points!

 means, take
the leading
coefficient

Karatsuba again…

Find a polynomial passing through these points

(0, a0 b0), (1, (a0 + a1)(b0 + b1)), (, a1 b1)

Clearly it must be a quadratic polynomial

c0 + c1 x + c2 x2

Setting x = 0, gives that c0 = a0 b0

Setting x = , gives that c2 = a1 b1

Setting x = 1, gives that c0 + c1 + c2 = (a0 + a1)(b0 + b1)

It follows, c1 = (a0 + a1)(b0 + b1) - a0 b0 - a1 b1

Wow, exactly like in Karatsuba’s algorithm

Toward to the
Fast Fourier Transform

To compute the polynomial product A(x)B(x),

1) evaluate A(x) and B(x) at some points xk,

2) multiply A(xk)B(xk),

3) then find the polynomial which passes through
these points.

