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Fast Fourier Transform 
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Fourier  
(1768 –1830) 

Gauss  
(1777 – 1855) 

Lagrange  
(1736 –1813) 

Outline 

 
1) Legendre’s Interpolation 

2) Vandermonde Matrix 

3) Roots of Unity 

4) Polynomial Evaluation 

High Level Idea 

To compute the polynomial (order n) product 
A(x)B(x),  

 
1) evaluate A(x) and B(x) at some (2n+1) points xk,  

2) multiply A(xk)B(xk),  

3) then find the polynomial which passes through 
these points. 

The worst-case complexity 

To compute the polynomial product A(x)B(x),  
 

1) evaluate A(x) and B(x) at some points xk,  

- what’s the complexity of A(xk)-? 

- what’s the complexity of A(xk) at n points? 

2) multiply A(xk)B(xk),  

3) then find the polynomial which passes through 
these points. 

 -  how can we do it? What is it complexity? 

Interpolation 

Given a set of points 

x1 

y1 

(x2,y2) (x3,y3) 

(x4,b4) 

(x5,y5) 

Find a (low-degree) polynomial which “fits the data” 

Interpolation 

Theorem:   

 There is exactly one polynomial P(x)  

    of degree at most n such that  

 P(xk) = yk for all k = 0, …, n. 

Given pairs (x0, y0), (x1, y1), …, (xn, yn) 
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Theorem Proof 

There are two things to prove. 

1. There is at least one polynomial of degree 

≤ n passing through all n+1 data points. 

2. There is at most one polynomial of degree 

≤ n passing through all n+1 data points. 

Let’s prove #2 first. 

Proof #2: There is at most one polynomial  

Suppose P(x) and Q(x) both do the trick. 

Let R(x) = P(x)−Q(x).   

Since deg(P), deg(Q) ≤ n we must have deg(R) ≤ n. 

But R(ak) = bk−bk = 0 for all k = 0, …, n. 

Thus R(x) has more roots (n+1) than its degree. 

Thus, R(x) must be the 0 polynomial, i.e., 

P(x)=Q(x). 

 

Proof #1 

The method for constructing the polynomial 

is called Lagrange’s Interpolation. 

Discovered in 1795  

by J.-L. Lagrange. 

Lagrange Interpolation 

a0 

a1 

a2 

··· 

an-1 

an 

b0 

b1 

b2 

··· 

bn-1 

bn 

Want P(x) with degree ≤ n  

such that  P(ak) = bk  ∀k. 

Special Case 

a0 

a1 

a2 

··· 

an-1 

an 

1 

0 

0 

··· 

0 

0 

Once we solve this special case, 

the general case is very easy. 

Special Case 

a0 

a1 

a2 

··· 

an-1 

an 

1 

0 

0 

··· 

0 

0 

Let Q(x) = (x−a1)(x−a2)···(x−an) 

Degree is n.  ✔ 

Q(a1) = Q (a2) = · · · = Q (an) = 0.  ✔ 

Q(a0) =?? 
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Lagrange Interpolation 

a0 

a1 

a2 

··· 

an-1 

an 

1 

0 

0 

··· 

0 

0 

Denominator 

is a nonzero 

field element 

Numerator  

is a deg. n  

polynomial 

Call this the selector polynomial for a0. 
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)a)...(xa(x
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0
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Another special case 

a0 

a1 

a2 

··· 

an-1 

an 

0 

1 
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··· 
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0 
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Lagrange Interpolation 

a0 

a1 

a2 

··· 

an-1 

an 

0 

0 

0 

··· 

0 

1 

)a)...(aa(a

)a)...(xa(x
(x)S

1-nn0n

1-n0
n






Great!  But what about this data? 

a0 

a1 

a2 

··· 

an-1 

an 

b0 

b1 

b2 

··· 

bn-1 

bn 

P(x) = b0 S0(x) + … + bn Sn(x) 

This formula is called Lanrange’s Interpolation 

Lagrange Interpolation 

Given pairs (x0, y0), (x1, y1), …, (xn, yn) 

There is a unique polynomial to fit these points:  

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

Given two polynomials 

Example 

A(x) = 1 + x + x2 B(x) = 1 + 2 x + 3 x2 

Compute their values at x = -2, -1, 0, 1, 2 

{A(-2), A(-1), A(0), A(1), A(2)} = {3, 1, 1, 3, 7} 

{B(-2), B(-1), B(0), B(1), B(2)} = {9, 2, 1, 6, 17} 

Pointwise multiplication: 

{C(-2), C(-1), C(0), C(1), C(2)} = {27, 2, 1, 18, 119} 
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Example 

Points to fit 

(-2,27), (-1,2), (0, 1), (1, 18), (2, 119) 

This yields 

432 3x5x6x3x1y(x) 

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

 

What is the runtime complexity  

of Lagrange’s interpolation? 

O(n3), if we expand 

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

Matrix Form 

Consider a case of two points 

This could be written in a matrix form 

12

1

12

1

yy
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xx

xx
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
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


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
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1

0

y

y

a

a
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x1

that defines a0 and a1. 

xaax
xx
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xyxy
y 10
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


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


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The Vandermonde Matrix 

The Lagrange formula defines a 

polynomial 

where coefficients ak can be found by solving this 

or in short V.a = y 





n

0k

k
kxaA(x)

Thus, a = V-1.y 


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

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The Vandermonde Matrix 












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
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
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n
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2
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n
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2
00
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...............
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V

In order to inverse the matrix V, we have  

to prove that it’s nonsingular. 

Determinant of the Vandermonde Matrix 


 






















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2
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Since the n + 1 points are distinct, the determinant  

can't be zero.  

The proof (by induction on n) is left as an 

exercise to a student  
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Complexity of Interpolation  

It follows that the complexity of interpolation 

depends on how fast can we inverse the 

Vandermonde matrix. 
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The success depends on the values of xk, k=0, …,n 

Lagrange’s Interpolation 
formula can be represented via 

the Vandermonde Matrix.  

Computing Polynomials 

Given a polynomial of degree n.  

What is the complexity of computing its value at 

a single point, A(x0)? 

x)...)ax(a...x(ax(aaA(x) n1n210  

Horner’s Rule: O(n) 





n

0k

k
kxaA(x)

Computing Polynomials 

So we compute the single value in linear time. 

Therefore, it takes O(n2) to compute a polynomial 

of degree n at n points. 

In the next slides we will develop a new method 

that has O(n log n) runtime complexity. 

Computing Polynomials 

The key idea is to use the divide-and-conquer 

algorithm. We split a polynomial into two parts: 

with even and odd degree terms. 

A(x) = A0(x2) + x A1(x2)  

For example, 

1+2x+3x2+4x3+5x4+6x5=(1+3x2+5x4)+x(2+4x2+6x4) 

Worst-time Complexity 

Let T(n) be the complexity of computing a 

degree-n polynomial at 2n+1 points. Thus 

This solves to O(n log n). 

Great! The only problem is that the algorithm 

requires of having half positive and half negative 

points on each iteration. 

 O(n)  T(n/2) 2  T(n) 
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Very special points 

So, we need to find such a set of points that  

1) half of points are negative and the second half 

is positive 

2) this property holds after squaring 

A(x) = A0(x2) + x A1(x2)  

Roots of Unity 

They are defined as solutions to zn = 1. 

Here is n = 8 

+1 -1 

+i 

-i 

Complex numbers on a unit circle are represented 

by z = ei=cos() + i sin() 

π/4 ie i  ii

 i  ii

 

Roots of Unity: n = 8 

Let w = i, then roots of z8 = 1 can be written as 

1, w, w2, w3, w4, w5, w6, w7 

Since i2 = -1, and thus w4 = -1,  they can also be 

written as  

1, w, w2, w3, -1, -w, -w2, -w3 

Let us take a half and square them 

(1, w, w2, w3)2 = (1, w2, w4, w6) = (1, w2, -1, -w2) 

(1, w2)2 = (1, w4) = (1, -1) 
Do it again 

Computing Polynomials 

Our task to compute 

A(1), A(w), A(w2),… 

Given a polynomial of degree n.  

where wn+1 = 1. 

We can write these computations in a matrix form!!! 





n

0k

k
kxaA(x)

Computing Polynomials 

This is the Vandermonde matrix. 

We will prove that this matrix multiplication can 

be done in O(n log n) 
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n
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k
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
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

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



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

n

1

0

n n2nn
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a
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A(w

...
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)

Lagrange’s Interpolation 
formula can be represented 

via the Vandermonde Matrix. 

Polynomial evaluation is also 
computed via the 

Vandermonde Matrix.   
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High Level Idea 

To compute the product A(x)B(x) of polynomials 
(of order n) 

 
1) evaluate A(x) and B(x) at (2n+1) roots of unity, 

using the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the Vandermonde matrix 

O(n log n) 

O(n) 

O(n log n) 


