

Theorem Proof

There are two things to prove.

- 1. There is at least one polynomial of degree ≤ n passing through all n+1 data points.
- 2. There is at *most* one polynomial of degree ≤ n passing through all n+1 data points.

Let's prove #2 first.

Proof #2: There is at *most* one polynomial

Suppose $P(x)$ and $Q(x)$ both do the trick. Let $R(x) = P(x) - Q(x)$. Since deg(P), deg(Q) \leq n we must have deg(R) \leq n. But $R(a_k) = b_k - b_k = 0$ for all $k = 0, ..., n$. Thus $R(x)$ has more roots $(n+1)$ than its degree. Thus, $R(x)$ must be the 0 polynomial, i.e., $P(x)=Q(x)$.

Lagrange Interpolation

Given pairs (x₀, y₀), (x₁, y₁), ..., (x_n, y_n) There is a unique polynomial to fit these points:

$$
y(x) = \sum_{j=0}^{n} y_j \prod_{\substack{k=0 \ k \neq j}}^{n} \frac{x - x_k}{x_j - x_k}
$$

Example

Example

Points to fit

(-2,27), (-1,2), (0, 1), (1, 18), (2, 119)

This yields

$$
y(x) = \sum_{j=0}^{n} y_j \prod_{k=0}^{n} \frac{x - x_k}{x_j - x_k}
$$

$$
y(x) = 1 + 3x + 6x^2 + 5x^3 + 3x^4
$$

n

$$
y(x) = 1 + 3x + 6x^2 + 5x^3 + 3x^4
$$

The Vandermonde Matrix \mathbf{I} \mathbf{L} \mathbf{L} \mathbf{I} Д \mathcal{L} $\vert \cdot \vert$ \mathbf{L} | 1 Ľ \mathcal{L} ∫ 1 $=$ \vert x_n^2 ... x_n^n x_1^2 ... x_1^n x_0^2 ... x_0^n $1 \times_n \times_n^2 ... \times_n^n$ 1 x_1 x_1^2 ... x_1^n 1 x_0 x_0^2 ... x_0^n $V =$ In order to inverse the matrix V, we have to prove that it's nonsingular.

Determinant of the Vandermonde Matrix $=\prod_{k=0}\prod_{j=0}$ $(x_k - x_j)$ $\overline{}$ \vert \mathbb{L} \mathbb{L} Д \mathcal{L} | .
| . \vert | 1 \vert . Ų (1 n k=0, k-1 j 0 k j n 2 n n n x_1^2 ... x_1^n x_0^2 ... x_0^n $(x_{k} - x_{i})$ $1 \quad x_n \quad x_n^2 \quad ... \quad x_n^n$ 1 x_1 x_1^2 ... x_1^n $1 \times_{0} \times_{0}^{2} \dots \times_{0}^{n}$ det Since the n + 1 points are distinct, the determinant can't be zero.

> The proof (by induction on n) is left as an exercise to a student

Complexity of Interpolation

$$
\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}^{-1} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}
$$

It follows that the complexity of interpolation depends on how fast can we inverse the Vandermonde matrix.

The success depends on the values of x_k , k=0, ...,n

 \mathcal{L} \mathbf{I} \mathbb{L} \perp \mathbb{L}

 \mathcal{L}

Д

Computing Polynomials

Given a polynomial of degree n.

$$
A(x) = \sum_{k=0}^n a_k x^k
$$

What is the complexity of computing its value at a single point, A(x $_{\rm 0}$)?

Horner's Rule: \bigcup O(n)

$$
A(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_{n-1} + a_n x)...)
$$

Therefore, it takes $O(n^2)$ to compute a polynomial of degree n at n points.

In the next slides we will develop a new method that has O(n log n) runtime complexity.

Computing Polynomials

The key idea is to use the divide-and-conquer algorithm**.** We split a polynomial into two parts: with even and odd degree terms.

$$
A(x) = A_0(x^2) + x A_1(x^2)
$$

For example,

$$
1+2x+3x^2+4x^3+5x^4+6x^5=(1+3x^2+5x^4)+x(2+4x^2+6x^4)
$$

Worst-time Complexity

Let T(n) be the complexity of computing a degree-n polynomial at 2n+1 points**.** Thus

$$
T(n) = 2 T(n/2) + O(n)
$$

This solves to O(n log n).

Great! The only problem is that the algorithm requires of having half positive and half negative points on each iteration.

Very special points

 $A(x) = A_0(x^2) + x A_1(x^2)$

So, we need to find such a set of points that

1) half of points are negative and the second half is positive

2) this property holds after squaring

Roots of Unity: n = 8 Let w = \sqrt{i} , then roots of z^8 = 1 can be written as 1, w, w^2 , w^3 , w^4 , w^5 , w^6 , w^7 Since $i^2 = -1$, and thus $w^4 = -1$, they can also be written as 1, w, w^2 , w^3 , -1, -w, -w², -w³ Let us take a half and square them $(1, w, w^2, w^3)^2 = (1, w^2, w^4, w^6) = (1, w^2, -1, -w^2)$ $(1, w^2)^2 = (1, w^4) = (1, -1)$ Do it again

Computing Polynomials

Given a polynomial of degree n.

$$
A(x) = \sum_{k=0}^n a_k x^k
$$

Our task to compute

$$
A(1), A(w), A(w^2),...
$$

where $w^{n+1} = 1$.

We can write these computations in a matrix form!!!

High Level Idea

To compute the product $A(x)B(x)$ of polynomials (of order n)

- 1) evaluate $A(x)$ and $B(x)$ at (2n+1) roots of unity, using the Vandermonde matrix O(n log n)
- 2) multiply $A(x_k)B(x_k)$, $O(n)$
- 3) then find the polynomial using Lagrange's interpolation via the Vandermonde matrix

O(n log n)