

Theorem Proof

There are two things to prove.

- 1. There is at *least* one polynomial of degree ≤ n passing through all n+1 data points.
- 2. There is at *most* one polynomial of degree ≤ n passing through all n+1 data points.

Let's prove #2 first.

Proof #2: There is at *most* one polynomial

Suppose P(x) and Q(x) both do the trick. Let R(x) = P(x)-Q(x). Since deg(P), deg(Q) \leq n we must have deg(R) \leq n. But R(a_k) = b_k-b_k = 0 for all k = 0, ..., n. Thus R(x) has more roots (n+1) than its degree. Thus, R(x) must be the 0 polynomial, i.e., P(x)=Q(x).

Lagrange Interpolation		
a ₀	b _o	
a ₁	b ₁	
a ₂	b ₂	
a _{n-1}	b _{n-1}	
a _n	b _n	
Want P(x) with degree ≤ n such that P(a _k) = b _k ∀k.		

Special Case		
a	^I O	1
	I ₁	0
	№2	0
	n-1	0
c	l _n	0
Once we so	lve this s	pecial case,
the genero	al case is	very easy.

Another special case	
a ₀	0
a ₁	1
a ₂	0
a _{n-1}	0
a _n	0
$S_{1}(x) = \frac{(x - a_{0})(x - a_{2})(x - a_{n})}{(a_{1} - a_{0})(a_{1} - a_{2})(a_{1} - a_{n})}$	

Lagrange Interpolation			
	a ₀	0	
	a ₁	0	
	a ₂	0	
	a _{n-1}	0	
	a _n	1	
$S_{n}(x) = -\frac{1}{(x)}$	$(x - a_0).$ $(a_n - a_0).$	$\frac{(x - a_{n-1})}{(a_n - a_{n-1})}$	

Great!	But what a	about	this data?
	a ₀	b ₀	
	a ₁	b_1	
	a ₂	b ₂	
	a _{n-1}	b _{n-1}	
	a _n	b _n	
P(x	:) = b ₀ S ₀ (x) +	+ b _n S	ō _n (×)
This formula is	s called Lanra	nge's Ir	iterpolation

Lagrange Interpolation

Given pairs (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) There is a unique polynomial to fit these points:

$$\mathbf{y}(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{y}_{j} \prod_{\substack{k=0\\k\neq j}}^{n} \frac{\mathbf{x} - \mathbf{x}_{k}}{\mathbf{x}_{j} - \mathbf{x}_{k}}$$

Example

Given two polynomials	
$A(x) = 1 + x + x^2$	B(x) = 1 + 2 x + 3 x ²
Compute their values at x	= -2, -1, 0, 1, 2
{A(-2), A(-1), A(0), A(1), A	(2)} = {3, 1, 1, 3, 7}
{B(-2), B(-1), B(0), B(1), B(2)} = {9, 2, 1, 6, 17}	
Pointwise multiplication:	
{C(-2), C(-1), C(0), C(1), C(2	2)} = {27, 2, 1, 18, 119}

Example

Points to fit

(-2,27), (-1,2), (0, 1), (1, 18), (2, 119)

This yields

$$\mathbf{y}(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{y}_{j} \prod_{\substack{k=0\\k\neq j}}^{n} \frac{\mathbf{x} - \mathbf{x}_{k}}{\mathbf{x}_{j} - \mathbf{x}_{k}}$$

$$y(x) = 1 + 3x + 6x^2 + 5x^3 + 3x^4$$

Matrix Form
Consider a case of two points $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$
$y = \frac{y x_0 - y_0 x_1}{x_0 - x_1} + \frac{y_0 - y_1}{x_0 - x_1} x = a_0 + a_1 x$
This could be written in a matrix form
$ \begin{pmatrix} 1 & \mathbf{x}_{0} \\ 1 & \mathbf{x}_{1} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{0} \\ \mathbf{a}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{y}_{0} \\ \mathbf{y}_{1} \end{pmatrix} $
that defines a_0 and a_1 .

Determinant of the Vandermonde Matrix
$det \begin{pmatrix} 1 & x_{0} & x_{0}^{2} & \dots & x_{0}^{n} \\ 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n} \end{pmatrix} = \prod_{k=0}^{n} \prod_{j=0}^{k-1} (x_{k} - x_{j})$
Since the n + 1 points are distinct, the determinant can't be zero.

The proof (by induction on n) is left as an exercise to a student $\ensuremath{\textcircled{}}$

$$\begin{pmatrix} \mathbf{a}_{0} \\ \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{x}_{0} & \mathbf{x}_{0}^{2} & \ldots & \mathbf{x}_{0}^{n} \\ \mathbf{1} & \mathbf{x}_{1} & \mathbf{x}_{1}^{2} & \ldots & \mathbf{x}_{1}^{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{x}_{n} & \mathbf{x}_{n}^{2} & \ldots & \mathbf{x}_{n}^{n} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{y}_{0} \\ \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \\ \mathbf{y}_{n} \end{pmatrix}$$

It follows that the complexity of interpolation depends on how fast can we inverse the Vandermonde matrix.

The success depends on the values of x_k , k=0, ...,n

Computing Polynomials

Given a polynomial of degree n.

$$A(\mathbf{x}) = \sum_{k=0}^{n} a_{k} \mathbf{x}^{k}$$

What is the complexity of computing its value at a single point, $A(x_0)$?

O(n)

Horner's Rule:

$$A(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_{n-1} + a_n x)...)$$

In the next slides we will develop a new method that has $O(n \log n)$ runtime complexity.

Computing Polynomials

The key idea is to use the divide-and-conquer algorithm. We split a polynomial into two parts: with even and odd degree terms.

$$A(x) = A_0(x^2) + x A_1(x^2)$$

For example,

 $1+2x+3x^2+4x^3+5x^4+6x^5=(1+3x^2+5x^4)+x(2+4x^2+6x^4)$

Worst-time Complexity

Let T(n) be the complexity of computing a degree-n polynomial at 2n+1 points. Thus

$$T(n) = 2 T(n/2) + O(n)$$

This solves to O(n log n).

Great! The only problem is that the algorithm requires of having half positive and half negative points <u>on each</u> iteration.

Very special points

 $A(x) = A_0(x^2) + x A_1(x^2)$

So, we need to find such a set of points that

1) half of points are negative and the second half is positive

2) this property holds after squaring

Roots of Unity: n = 8 Let w = \sqrt{i} , then roots of $z^8 = 1$ can be written as 1, w, w², w³, w⁴, w⁵, w⁶, w⁷ Since i² = -1, and thus w⁴ = -1, they can also be written as 1, w, w², w³, -1, -w, -w², -w³ Let us take a half and square them (1, w, w², w³)² = (1, w², w⁴, w⁶) = (1, w², -1, -w²) Do it again (1, w²)² = (1, w⁴) = (1, -1)

Computing Polynomials

Given a polynomial of degree n.

$$A(x) = \sum_{k=0}^{n} a_{k} x^{k}$$

Our task to compute

where $w^{n+1} = 1$.

We can write these computations in a matrix form!!!

High Level Idea

To compute the product A(x)B(x) of polynomials (of order n)

- O(n log n) 1) evaluate A(x) and B(x) at (2n+1) roots of unity, using the Vandermonde matrix
- O(n) 2) multiply $A(x_k)B(x_k)$,
- 3) then find the polynomial using Lagrange's interpolation via the Vandermonde matrix

O(n log n)