
1

Fast Fourier Transform

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 3 Jan 17, 2014 Carnegie Mellon University

Fourier
(1768 –1830)

Gauss
(1777 – 1855)

Lagrange
(1736 –1813)

Outline

1) Legendre’s Interpolation

2) Vandermonde Matrix

3) Roots of Unity

4) Polynomial Evaluation

High Level Idea

To compute the polynomial (order n) product
A(x)B(x),

1) evaluate A(x) and B(x) at some (2n+1) points xk,

2) multiply A(xk)B(xk),

3) then find the polynomial which passes through
these points.

The worst-case complexity

To compute the polynomial product A(x)B(x),

1) evaluate A(x) and B(x) at some points xk,

- what’s the complexity of A(xk)-?

- what’s the complexity of A(xk) at n points?

2) multiply A(xk)B(xk),

3) then find the polynomial which passes through
these points.

 - how can we do it? What is it complexity?

Interpolation

Given a set of points

x1

y1

(x2,y2) (x3,y3)

(x4,b4)

(x5,y5)

Find a (low-degree) polynomial which “fits the data”

Interpolation

Theorem:

 There is exactly one polynomial P(x)

 of degree at most n such that

 P(xk) = yk for all k = 0, …, n.

Given pairs (x0, y0), (x1, y1), …, (xn, yn)

2

Theorem Proof

There are two things to prove.

1. There is at least one polynomial of degree

≤ n passing through all n+1 data points.

2. There is at most one polynomial of degree

≤ n passing through all n+1 data points.

Let’s prove #2 first.

Proof #2: There is at most one polynomial

Suppose P(x) and Q(x) both do the trick.

Let R(x) = P(x)−Q(x).

Since deg(P), deg(Q) ≤ n we must have deg(R) ≤ n.

But R(ak) = bk−bk = 0 for all k = 0, …, n.

Thus R(x) has more roots (n+1) than its degree.

Thus, R(x) must be the 0 polynomial, i.e.,

P(x)=Q(x).

Proof #1

The method for constructing the polynomial

is called Lagrange’s Interpolation.

Discovered in 1795

by J.-L. Lagrange.

Lagrange Interpolation

a0

a1

a2

···

an-1

an

b0

b1

b2

···

bn-1

bn

Want P(x) with degree ≤ n

such that P(ak) = bk ∀k.

Special Case

a0

a1

a2

···

an-1

an

1

0

0

···

0

0

Once we solve this special case,

the general case is very easy.

Special Case

a0

a1

a2

···

an-1

an

1

0

0

···

0

0

Let Q(x) = (x−a1)(x−a2)···(x−an)

Degree is n. ✔

Q(a1) = Q (a2) = · · · = Q (an) = 0. ✔

Q(a0) =??

3

Lagrange Interpolation

a0

a1

a2

···

an-1

an

1

0

0

···

0

0

Denominator

is a nonzero

field element

Numerator

is a deg. n

polynomial

Call this the selector polynomial for a0.

)a)...(aa(a

)a)...(xa(x

)Q(a

Q(x)
(x)S

n010

n1

0
0






Another special case

a0

a1

a2

···

an-1

an

0

1

0

···

0

0

)a)...(aa)(aa(a

)a)...(xa)(xa-(x
(x)S

n12101

n20
1






Lagrange Interpolation

a0

a1

a2

···

an-1

an

0

0

0

···

0

1

)a)...(aa(a

)a)...(xa(x
(x)S

1-nn0n

1-n0
n






Great! But what about this data?

a0

a1

a2

···

an-1

an

b0

b1

b2

···

bn-1

bn

P(x) = b0 S0(x) + … + bn Sn(x)

This formula is called Lanrange’s Interpolation

Lagrange Interpolation

Given pairs (x0, y0), (x1, y1), …, (xn, yn)

There is a unique polynomial to fit these points:

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

Given two polynomials

Example

A(x) = 1 + x + x2 B(x) = 1 + 2 x + 3 x2

Compute their values at x = -2, -1, 0, 1, 2

{A(-2), A(-1), A(0), A(1), A(2)} = {3, 1, 1, 3, 7}

{B(-2), B(-1), B(0), B(1), B(2)} = {9, 2, 1, 6, 17}

Pointwise multiplication:

{C(-2), C(-1), C(0), C(1), C(2)} = {27, 2, 1, 18, 119}

4

Example

Points to fit

(-2,27), (-1,2), (0, 1), (1, 18), (2, 119)

This yields

432 3x5x6x3x1y(x) 

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

What is the runtime complexity

of Lagrange’s interpolation?

O(n3), if we expand

 




 




n

0j

n

jk

0k kj

k
j xx

xx
yy(x)

Matrix Form

Consider a case of two points

This could be written in a matrix form

12

1

12

1

yy

yy

xx

xx




































1

0

1

0

1

0

y

y

a

a

x1

x1

that defines a0 and a1.

xaax
xx

yy

xx

xyxy
y 10

10

10

10

100












The Vandermonde Matrix

The Lagrange formula defines a

polynomial

where coefficients ak can be found by solving this

or in short V.a = y





n

0k

k
kxaA(x)

Thus, a = V-1.y































































n

1

0

n

1

0

n
n

2
nn

n
1

2
11

n
0

2
00

y

...

y

y

a

...

a

a

x...xx1

...............

x...xx1

x...xx1

The Vandermonde Matrix























n
n

2
nn

n
1

2
11

n
0

2
00

x...xx1

...............

x...xx1

x...xx1

V

In order to inverse the matrix V, we have

to prove that it’s nonsingular.

Determinant of the Vandermonde Matrix


 























n

0k

1-k

0j
jk

n
n

2
nn

n
1

2
11

n
0

2
00

)x(x

x...xx1

...............

x...xx1

x...xx1

det

Since the n + 1 points are distinct, the determinant

can't be zero.

The proof (by induction on n) is left as an

exercise to a student 

5

Complexity of Interpolation

It follows that the complexity of interpolation

depends on how fast can we inverse the

Vandermonde matrix.
































































n

1

0

1

n
n

2
nn

n
1

2
11

n
0

2
00

n

1

0

y

...

y

y

x...xx1

...............

x...xx1

x...xx1

a

...

a

a

The success depends on the values of xk, k=0, …,n

Lagrange’s Interpolation
formula can be represented via

the Vandermonde Matrix.

Computing Polynomials

Given a polynomial of degree n.

What is the complexity of computing its value at

a single point, A(x0)?

x)...)ax(a...x(ax(aaA(x) n1n210  

Horner’s Rule: O(n)





n

0k

k
kxaA(x)

Computing Polynomials

So we compute the single value in linear time.

Therefore, it takes O(n2) to compute a polynomial

of degree n at n points.

In the next slides we will develop a new method

that has O(n log n) runtime complexity.

Computing Polynomials

The key idea is to use the divide-and-conquer

algorithm. We split a polynomial into two parts:

with even and odd degree terms.

A(x) = A0(x2) + x A1(x2)

For example,

1+2x+3x2+4x3+5x4+6x5=(1+3x2+5x4)+x(2+4x2+6x4)

Worst-time Complexity

Let T(n) be the complexity of computing a

degree-n polynomial at 2n+1 points. Thus

This solves to O(n log n).

Great! The only problem is that the algorithm

requires of having half positive and half negative

points on each iteration.

 O(n) T(n/2) 2 T(n) 

6

Very special points

So, we need to find such a set of points that

1) half of points are negative and the second half

is positive

2) this property holds after squaring

A(x) = A0(x2) + x A1(x2)

Roots of Unity

They are defined as solutions to zn = 1.

Here is n = 8

+1 -1

+i

-i

Complex numbers on a unit circle are represented

by z = ei=cos() + i sin()

π/4 ie i  ii

 i ii



Roots of Unity: n = 8

Let w = i, then roots of z8 = 1 can be written as

1, w, w2, w3, w4, w5, w6, w7

Since i2 = -1, and thus w4 = -1, they can also be

written as

1, w, w2, w3, -1, -w, -w2, -w3

Let us take a half and square them

(1, w, w2, w3)2 = (1, w2, w4, w6) = (1, w2, -1, -w2)

(1, w2)2 = (1, w4) = (1, -1)
Do it again

Computing Polynomials

Our task to compute

A(1), A(w), A(w2),…

Given a polynomial of degree n.

where wn+1 = 1.

We can write these computations in a matrix form!!!





n

0k

k
kxaA(x)

Computing Polynomials

This is the Vandermonde matrix.

We will prove that this matrix multiplication can

be done in O(n log n)





n

0k

k
kxaA(x)































































n

1

0

n n2nn

n2

n a

...

a

a

w...ww1

...............

w...ww1

1...111

A(w

...

A(w)

A(1)

)

Lagrange’s Interpolation
formula can be represented

via the Vandermonde Matrix.

Polynomial evaluation is also
computed via the

Vandermonde Matrix.

7

High Level Idea

To compute the product A(x)B(x) of polynomials
(of order n)

1) evaluate A(x) and B(x) at (2n+1) roots of unity,

using the Vandermonde matrix

2) multiply A(xk)B(xk),

3) then find the polynomial using Lagrange’s
interpolation via the Vandermonde matrix

O(n log n)

O(n)

O(n log n)

