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Fast Fourier Transform - II 

Algorithm Design and Analysis 

Victor Adamchik CS 15-451       Spring 2014 

Lecture 4 Jan 22, 2014 Carnegie Mellon University 

Fourier  
(1768 –1830) 

Gauss  
(1777 – 1855) 

Lagrange  
(1736 –1813) 

Applications 

Signal Processing 

Image Compression 

Statistics, Finance 

Pattern Matching 

 

History 

Cooley and Tukey's paper 1965 

It was known to Gauss, 1805. 

Tukey derived the basic reduction while in a meeting of  

President Kennedy's Science Advisory Committee  for off- 

shore detection of nuclear tests in the Soviet Union. 

The idea was to analyze time series obtained from  

seismometers. Other possible applications to national  
security included the long-range acoustic detection of  
nuclear submarines. 
   

High Level Idea 

To compute the product A(x)B(x) of polynomials 
 

1) evaluate A(x) and B(x) at roots of unity, using 
the Vandermonde matrix 

2) multiply A(xk)B(xk),  

3) then find the polynomial using Lagrange’s 
interpolation  via the Vandermonde matrix 

O(n log n) 

O(n) 

O(n log n) 

Lagrange’s Interpolation 
formula can be represented 

via the Vandermonde Matrix. 

Polynomial evaluation is also 
computed via the 

Vandermonde Matrix.   

The Lagrange Interpolation 

The Lagrange formula defines a 

polynomial 

where coefficients ak can be found by solving this 
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or in short V.a = y 
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Thus, a = V-1.y 
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Complexity of Interpolation  

It follows that the complexity of interpolation 

depends on how fast can we inverse the 

Vandermonde matrix. 
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Determinant of the Vandermonde Matrix 

Since the n points are distinct, the determinant  

can't be zero.  

The proof (by induction on n) is left as an 

exercise to a reader  
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Computing Polynomials 

We will prove that this matrix multiplication can 

be done in O(n log n) 
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Roots of Unity 

are solutions to zn =1  

The n-th roots of unity are points on the 

complex unit circle every 2/n radians apart 
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Primitive Roots of Unity 

Definition: A complex number w is called a  

n-th primitive root of unity if 

1)  wn = 1 

2)  wp ≠ 1, for p = 1, .2, …, n-1 

Roots of Unity 

Claim 1: Let w be a primitive root of zn =1 then 

Proof. Multiply it by w 
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Roots of Unity 

Claim 2: Let w be a primitive root of zn =1 and  

p = 1, …, n-1 then 

Proof.  
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Modular Arithmetic 

Consider a set of powers of 2 

1,2,4,8,16,32,64,128 

modulo 17 

1,2,4,8,-1,-2,-4,-8 

Square and then do mod 17 again 

{1,2,4,8}^2 = {1, 4, 16, 64} ={1,4,-1,-4}  

Computing Polynomials 

Consider n = 4 
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Computing Polynomials, n = 4 

V4 

even 

odd 

swap V2 

22

22

V
i0

01
V

V
i0

01
V

3

1

2

0

3

2

1

0

a

a

a

a

ii11

1111

ii11

1111

a

a

a

a

i1i1

1111

i1i1

1111

Computing Polynomials 

where Dn is a diagonal matrix 
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Proof 

Consider j-th row 
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Computing Polynomials 
1-n/2
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Let wn denote a root of zn = 1.  

Since wn
2 = wn/2, (it follows from (z2)n/2 = zn 

(j)Fw(j)F 2
j
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here Fj is a n/2 size problem. 
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Computing Polynomials 
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Periodic 

property 
Symmetry

property 

Computing Polynomials 

1-n/2 ..., 1, 0,  j (j),F w(j)F)A(w 2
j
n1

j

This outlines the divide and conquer algorithm. 

Therefore, V.a can be computed in O(n log n) 

1-n/2 ..., 1, 0,  j (j),F w(j)F)A(w 2
j
n1

n/2j

Complexity of Interpolation  

We know that the complexity of interpolation 

depends on how fast can we inverse the 

Vandermonde matrix. 

We will show that this step is also O(n log n) 
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Inverse Vandermonde 

Theorem. 

where wn = 1. 
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Inverse Vandermonde 

Let V* be V where w -> 1/w. 
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Compute V*.V Each element of the product is 
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Inverse Vandermonde 

i)-1)(j(ni)-2(jij w...ww1j).V)(i,*(V

Recall 

It follows, that 
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V(1/w).V(w) = n I 

Polynomial multiplication 

1n10
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a,...,a,a
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))B(wA(w..,A(w)B(w),.A(1)B(1), 12n1-2n

Point-value multiplication 

FFT 

Inverse FFT 

)B(w),...,B(wB(w),B(1),

)A(w),...,A(wA(w),A(1),
12n2

12n2

FFT in place 

Let n = 8  

The right column is a 

bit reversal!.   

The recursive algorithm can simply call on the left and right 

halves, rather than on the odd and even indices. 

All DSP processors include a hardware bit reversal capability 

Discrete Fourier Transform 

DFT converts a set of sample points into another 

set ordered by frequencies. It reveals periodicities 

in input data. 

1n
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j k
kj wab

A DFT of {a0,a1,…,an-1} is defined by 

where wn = 1. In a matrix form V.a = b 

FFT is an algorithm for computing DFT. 

Convolution 
The convolution of two vectors ak and bk is a third 

vector c = ab which represents an overlap 

between the two vectors.  

The Convolution Theorem says that the DFT of 

a convolution of two vectors is the point-wise 

product of the DFT of the two vectors 

DFT(b) DFT(a)b)DFT(a

1n

0k
k-jkj bac

Convolution 

DFT(b) DFT(a)b)DFT(a

It follows, using FFT we can compute convolution in 

O(n log n). 

Note that inverse DFT is just a regular DFT with w 

replaced by w-1. 

DFT(b)) (DFT(a)DFTba -1
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Polynomial multiplication 

this is just a convolution of two vectors a and b 
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Given two n-bit integers 

a = an-1…a0 

b = bn-1…b0 

compute their product 

A(x) =a0 + … + an-1 xn-1 

B(x) =b0 + … + bn-1 xn-1 

 

a=A(2),  b = B(2) 

 

Compute C(x) = A(x) B(x) 

Evaluate C(2) 
 


