

Correctness

We need to prove that $C(j)$ = OPT(j). Clearly, $OPT(j) \leq C(j)$. Proof of $C(i) \leq OPT(i)$ by strong induction Base case $i = 1$. $C(1) = 0 = OPT(1)$ IH: true for j-1 points We add j-th point. Case 1). all points fit by a single line

Correctness

Case 2). The last breakpoint is at p_i . which means that $f_i \neq f_{i+1}$ and $f_{i+1} = f_{i+2}, ..., f_{j}$. OPT(j) = OPT(i) + α + P(p_{i+1}, …, p_j) ≥ by IH ≥ C (j-1) + α + P(p_{i+1}, …, p_j) = C (j)

Precompute all
$$
P(p_1,...,p_j) = \sum_{k=1}^{j} (c_{i,j} - p_k)^2
$$

\n $1 \le i < j \le n$
\nWhat is the runtime complexity of precomputing?
\n $O(n^3)$, hmm, this does not speed up the algorithm

How about using DP?

The main problem is how to compute P for j+1 points knowing the result for j points.

$$
\text{Precompute all } P(p_i,...,p_j) = \sum_{k=i}^j (c-p_k)^2
$$

Claim1: It takes O(n²) to precompute all P(p_i,...,p_j).

What would be the new complexity of fitting?

$$
C(j) = min \begin{cases} P(p_1, p_2, \dots, p_j) \\ min \atop i < j \end{cases} \frac{P(p_1, p_2, \dots, p_j)}{d(i) + \alpha + P(p_{i+1}, \dots, p_j)}.
$$

We can compute each $C(j)$ in $O(j)$ Thus, the total is $O(n^2)$

Precompute all
$$
P(p_1,...,p_j) = \sum_{k=1}^{j} (c - p_k)^2
$$

\nClaim2: $P = M_2 - \frac{M_1^2}{M_0}$
\nDef: The k-th moment M_k is defined by $M_k = \sum_{j=1}^{n} p_j^k$
\n $M_0 = n$, $M_1 = p_1 + ... + p_n$, $M_2 = p_1^2 + ... + p_n^2$
\nObserve, if we know M_k for n points, we can compute M_k for (n+1) points in $O(1)$.

Proof of Claim2
$$
P = M_2 - M_1^2 / M_0
$$

\nLet us recall the first slide ("simple case") in
\nwhich we showed $c = \frac{1}{n} \sum_{k=1}^{n} p_k$
\nThis can be rewritten through moments $c = \frac{M_1}{M_0}$
\nThe next step is all math
\n
$$
P = \sum (c - p_k)^2 = \sum (\frac{M_1}{M_0} - p_k)^2 = \sum (\frac{M_1}{M_0})^2 - 2 \frac{M_1}{M_0} \sum p_i + \sum p_i^2
$$
\n
$$
P = (\frac{M_1}{M_0})^2 M_0 - 2 \frac{M_1}{M_0} M_1 + M_2 = M_2 - \frac{M_1^2}{M_0}
$$

Proof of Claim1
\nClaim1: It takes
$$
O(n^2)
$$
 to compute all
\n
$$
P(p_i,...,p_j) = M_2 - \frac{M_1^2}{M_0}
$$
\n
$$
M_k(p_i,...,p_j) = p_i^k + p_{i+1}^k + ... + p_j^k
$$
\nWe use DP to compute moments!!
\n
$$
M_k(p_i,...,p_j) = \begin{cases} p_j^k, & \text{if } i = j \\ M_k(p_i,...,p_{j+1}) + p_j^k, o.w. \end{cases}
$$

It has $O(n^2)$ time complexity.

Fitting in L_1 We considered fitting using least squares $(L₂)$ n n-1 $\min_{f_1,...,f_n} \sum_{k=1}^n (f_k - p_k)^2 + \alpha \sum_{k=1}^n \delta(f_k, f_{k+1})$ $\sum_{k=1}^{\infty}$ \sum_{k} $k + 1$ $k = 1$ $L₂$ However in many practical cases a variation of the above achieves a better result, namely n-1 n $\overline{1}$ MIN $\left[\left|f_{k} - p_{k}\right| + \alpha\right]$ $\delta(f_{k}, f_{k+1})$

$$
\underbrace{MIN}_{f_1\ldots f_n}\underbrace{\sum_{k=1}^n |f_k - p_k|}_{L_1} + \alpha \underbrace{\sum_{k=1}^n \delta(f_k, f_{k+1})}_{L_1}
$$

