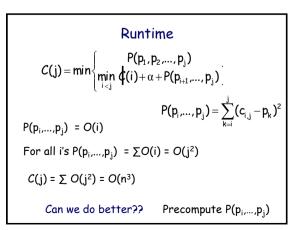


Correctness

We need to prove that C(j) = OPT(j). Clearly, $OPT(j) \le C(j)$. Proof of $C(j) \le OPT(j)$ by strong induction Base case j = 1. C(1) = 0 = OPT(1)IH: true for j-1 points We add j-th point. Case 1). all points fit by a single line

Correctness

Case 2). The last breakpoint is at p_i . which means that $f_i \neq f_{i+1}$ and $f_{i+1} = f_{i+2}, ..., f_j$. $OPT(j) = OPT(i) + \alpha + P(p_{i+1}, ..., p_j) \ge$ by IH $\ge C (j-1) + \alpha + P(p_{i+1}, ..., p_j) = C (j)$



Precompute all
$$P(p_i,...,p_j) = \sum_{k=i}^{j} (c_{i,j} - p_k)^2$$

 $1 \le i < j \le n$
What is the runtime complexity of precomputing?

 $O(n^3)$, hmm, this does not speed up the algorithm

How about using DP?

The main problem is how to compute P for j+1 points knowing the result for j points.

Precompute all
$$P(p_i,...,p_j) = \sum_{k=i}^{J} (c-p_k)^2$$

Claim1: It takes $O(n^2)$ to precompute all $P(p_{i},\!...,\!p_{j}).$

What would be the new complexity of fitting?

$$C(j) = \min \begin{cases} P(p_1, p_2, \dots, p_j) \\ \min_{i < j} \varphi(i) + \alpha + P(p_{i+1}, \dots, p_j) \end{cases}$$

We can compute each C(j) in O(j)Thus, the total is $O(n^2)$

Precompute all
$$P(p_1,...,p_j) = \sum_{k=i}^{j} (c-p_k)^2$$

Claim2:
 $P = M_2 - \frac{M_1^2}{M_0}$
Def: The k-th moment M_k is defined by $M_k = \sum_{j=1}^{n} p_j^k$
 $M_0 = n, \quad M_1 = p_1 + ... + p_n, \quad M_2 = p_1^2 + ... + p_n^2$
Observe, if we know M_k for n points, we can compute M_k for (n+1) points in O(1).

Proof of Claim2

$$P = M_{2} - M_{1}^{2} M_{0}$$
Let us recall the first slide ("simple case") in
which we showed

$$c = \frac{1}{n} \sum_{k=1}^{n} p_{k}$$
This can be rewritten through moments $c = \frac{M_{1}}{M_{0}}$
The next step is all math

$$P = \sum (c - p_{k})^{2} = \sum (\frac{M_{1}}{M_{0}} - p_{k})^{2} = \sum (\frac{M_{1}}{M_{0}})^{2} - 2\frac{M_{1}}{M_{0}} \sum p_{i} + \sum p_{i}^{2}$$

$$P = (\frac{M_{1}}{M_{0}})^{2} M_{0} - 2\frac{M_{1}}{M_{0}} M_{1} + M_{2} = M_{2} - \frac{M_{1}^{2}}{M_{0}}$$

Proof of Claim1
Claim1: It takes
$$O(n^2)$$
 to compute all
 $P(p_i,...,p_j) = M_2 - \frac{M_1^2}{M_0}$
 $M_k(p_i,...,p_j) = p_i^k + p_{i+1}^k + ... + p_j^k$
We use DP to compute moments!!
 $M_k(p_i,...,p_j) = \begin{cases} p_j^k, & \text{if } i = j \\ M_k(p_i,...,p_{j-1}) + p_j^k, \text{ o.w.} \end{cases}$

It has O(n²) time complexity.

