
1

Graph Algorithms

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 11 Feb 07, 2014 Carnegie Mellon University

Plan:

 DFS
 Topological Sorting
 Classification of Edges
 Biconnected Components

Graphs Traversal

Visiting all vertices in a systematic order.

for all v in V do visited[v] = false

for all v in V do if !visited[v] traversal(v)

 traversal(v) {

 visited[v] = true

 for all w in adj(v)

 do if !visited[w] traversal(w)

 }

O(V + E)

Graphs Traversals

•Depth-First Search (DFS)
•Breadth-First Search (BFS)

DFS uses a stack for backtracking.

BFS uses a queue for bookkeeping

Properties of DFS

Property 1

 DFS visits all the
vertices in the connected
component

Property 2

 The discovery
edges labeled by DFS
form a spanning tree of
the connected component

1 2 3

5

9

13 14 15 16

10 11 12

6 7 8

4

Applications of DFS

• Determine the connected components of
a graph

• Find cycles in a graph

• Determine if a graph is bipartite.

• Topologically sort in a directed graph

• Find the biconnected components

2

Topological Sorting

 B

A

C

E

D
It's easy to see that
such an ordering exists.
Find a vertex with zero
in-degree. Print it,
delete it from the
graph, and repeat. Complexity-?

PQ wrt in-degrees. O(E log V)

Find an ordering of the vertices
such that all edges go forward in
the ordering.

Topological Sorting with DFS

 B

A

C

E

D

DFS (v) {
 visited[v] = true
 for all w in adj(v)
 do if !visited[w]
 DFS (w);
 print(v);
 }

Do DFS;
Reverse the order;

Complexity-?
O(E + V)

Classification of Edges with DFS

 B

C C

F

Tree edge

Back edge

Cross edge

Forward
edge

F

A B C

D E

1 2 3

4 5 6

Tree edges - are edges in the DFS

Classification of Edges

Forward edges – edges (u,v) connecting u to a
descendant v in a depth-first tree

Back edges – edges (u,v) connecting u to an
ancestor v in a depth-first tree

 Cross edges – all other edges

Theorem.

A directed graph is acyclic iff a DFS yields

no back edges.

DAG

Theorem.

A directed graph is acyclic iff a DFS yields

no back edges.

DAG

Proof.

=>) by contrapositive.

If there is a back edge, the graph is surely
cyclic.

3

Theorem.

A directed graph is acyclic iff a DFS yields

no back edges.

 Proof.

<=) Suppose there is a cycle.

Let v be the first vertex discovered in the
cycle. Let (u, v) be the preceding edge in this
cycle. When we push v on the stack, no any
vertices on the cycle were discovered yet. Thus,
vertex u becomes a descendent of v in DFS.
Therefore, (u, v) is a back edge.

for all v in V do num[v] = 0, stack[v]=false

for all v in V do if num[v]==0 DFS(v)

k = 0;

 DFS(v) {

 k++; num[v] = k; stack[v]=true

 for all w in adj(v) do

 if num[w]==0 DFS(w) tree edge

 else if num[w] > num[v] forward edge

 else if stack[w] back edge

 else cross edge

 stack [v]=false

 }

Biconnectivity

B

A

C D

E

In many applications
it’s not enough to

know that a graph is
connected, but “how
well” it’s connected.

Articulation points

B

A

C D

E

A vertex is an
articulation point if

its removal (with
edges) disconnect a

graph.

A connected graph is
biconnected if it has

no articulation
points.

If a graph is not biconnected, we
define the biconnected

components

Biconnected Components

C D

Biconnected graphs
are of great interest
in communication and

transportation
networks B

A

C

E

If a graph is not
biconnected, we define

the biconnected
components

Find articulation points

Fred Hacker’s algorithm:

Delete a vertex

Run DFS to see if a graph is connected

Choose a new vertex. Repeat.

Complexity: O(V (V+E))

4

Biconnected Component
Algorithm

• It is based on a DFS

• We assume that G is undirected and
connected.

• We cannot distinguish between forward
and back edges

• Also there are no cross edges (!)

If for some child, there is no back

edge going to an ancestor of u,

then u is an articulation point.

Find articulation point:
an observation

u We need to keep a track of

back edges!

We keep a track of back edge

that goes higher in the tree.

Find articulation point:
next observation

What about the root?

Can it be an articulation point?

DFS root must have two or more children

Biconnected Component
Algorithm

• Run DFS

• When we reach a dead end, we will back
up. On the way up, we will discover back
edges. They will tell us how far in the
tree we could have gone.

• These back edges indicate a cycle in the
graph. All nodes in a cycle must be in the
same component.

Bookkeeping

• For each vertex we will store two
indexes. One is the counter of nodes we
have visited so far dfs[v]. Second - the
back index low[v].

• Definition.
low[v] is the DFS number of the lowest numbered

vertex x (i.e. highest in the tree) such that
there is a back edge from some descendent of v
to x.

How to compute low[v]?

• Back edge (u, v)

 low[u] = min(low[u], dfs[v])
If the edge goes to a lower dfs value then

 the previous back edge, make this the new low.

• Tree edge (u, v)

 low[u] = min(low[u], low[v])
Vertices u and v are in the same cycle.

5

How to test for articulation
point?

Using low[u] value we can test whether u

is an articulation point.

If for some child, there is no back edge going to

 an ancestor of u, then u is an articulation point.

If there was a back edge from child v,

than low[v] < dfs[u].

It follows, u is an articulation point iff it has a

child v such that low[v] >= dfs[u].

 The Algorithm

F G

A B C

H

D

I

E

1/1 2/2 3/3

4/4

Back edges

5/5 5/2

Backtracking

4/2

3/2

Vertex labels
dfs/low

low(A) = dfs(B)
Remove bicomponent GFAB

All edges are on a stack

6/6 7/7

8/8 9/9 8/1

7/1 6/1

2/1

Store edges on a
stack as you run DFS

Theorem : Let G = (V, E) be a connected,
undirected graph and S be a depth-first tree of G.
Vertex x is an articulation point of G if and only if
one of the following is true:

 (1) x is the root of S and x has two or more
children in S.

 (2) x is not the root and for some child s of x,
there is no back edge between any descendant of s
(including s itself) and a proper ancestor of x.

Theorem : Let G = (V, E) be a connected,
undirected graph and S be a depth-first tree of G.
Vertex x is an articulation point of G if and only if
one of the following is true:
 (1) x is the root of S and x has two or more
children in S.

Proof: Let two of the children be v and w. Imagine
a subtree rooted at v and another one rooted at w.
There is no an edge between these trees! This is
because the DFS tree has no cross edges. Thus,
any path must go through the root. If we delete
the root, we disconnect the graph.
Conversely, suppose the root has one child. Clearly,
deleting the root won’t disconnect the graph.

Theorem : Let G = (V, E) be a connected,
undirected graph and S be a depth-first tree of G.
Vertex x is an articulation point of G if and only if
one of the following is true:
 (2) x is not the root and for some child s of x,
there is no back edge between any descendant of s
(including s itself) and a proper ancestor of x.

Proof: =>) If x is an articulation vertex, then
removing it will disconnect child s from the parent
of x.
<=) If there is no such s, then x is not articulation
point. To see this, suppose v0 is the parent and
v1,…,vk are all children. By our assumption, there
exists a path from vi to v0. They are in the same
connected components. Removing x, won’t
disconnect the graph.

A B

D E

7/7

3/3

2/2

8/8

I

G

J

H

1/1

4/4

6/6

5/5

C

F

9/9

10/10

6/3

5/3 4/3

low(I)=dfs(G)

G

7/1

3/1

2/1

A

low(D)=dfs(A)

10/8

9/8 B

6

A

D

A

I

G

J

H G

G

B
E

C

F

B

A A B

