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Plan: 
 
 Strongly Connected Components 
 Tarjan’s Algorithm (1972) 

Algorithm for Biconnected 
Components 

Maintain dfs and low numbers for each vertex. 

 

The edges of an undirected graph are placed on a 
stack as they are traversed. 

 

When an articulation point is discovered, the 
corresponding edges are on a top of the stack. 

 

Therefore, we can output all biconnected 
components during a single DFS run. 

Algorithm for Biconnected 
Components 

for all v in V do dfs[v] = 0; 

for all v in V do if dfs[v]==0 BCC(v); 

k = 0; S – empty stack; 

BCC(v)   {  

      k++; dfs[v] = k; low[v]=k;  

      for all w in adj(v)  do 

              if dfs[w]==0 then 

                        push((v,w), S); BCC (w);  

                        low[v] = min( low[v], low[w] ); 

                        if low[w] ≥ dfs[v] then  pop(S) ;// output 

             else if dfs[w]  < dfs[v]  && w  S then 

                        push((v,w), S); low[v] = min( low[v], dfs[w] ); 

 } 
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Strongly Connected Components 

G is strongly connected if every pair (u, v) of  

vertices is reachable from one another. 

 

A strongly connected component (SCC) of G is a  

maximal set of vertices C  V such that for all  

vertices in C are reachable. 
 

 

Equivalent classes 
partitioning of the vertices 

Two vertices v and w are equivalent, denoted uv, 
if there is a path from u to v and one from v to u. 

The equivalent class of  is called a  
strongly connected component. 

The relation  is an equivalence relation. 

Reflexivity v  v. A path of zero length exists. 

Symmetry if v  u then u  v. By definition. 

Transitivity if v  u and u  w then v  w 
Join two paths to get one from v to w. 

DAG of SCCs 

Choose one vertex per equivalent class. 
Two vertices are connected if the corresponding 
components are connected by an edge. 

The resulting 
graph is a DAG. Applications… 

social networks 

Preamble 

Def.  A vertex is called a base if it has the 
lowest dfs number in the SCC. 

Lemma 2. A vertex is a base iff dfs[v] = low[v]. 

Lemma 1. Let b be  a base in a component X, 
then any vX is a descendant of b and all they 
are on the path b-v. 

Def.  low[v] is the smallest dfs-number of a 
vertex reachable by a back or cross edge from 
the subtree of v. 

Preamble 

WLOG, we assume that there is a vertex in the 
graph from which there are edges to each 
other vertex. 

If we start a DFS from that vertex, we will get 
only one spanning tree. 

If there is no such a vertex we can always add 
one. This won’t change the other SCCs. 

The Algorithm 
for all v in V do dfs[v] = 0; 

for all v in V do if dfs[v]==0 SCC(v); 

k = 0; S – empty stack; 

SCC(v)   {  

      k++; dfs[v] = k; low[v] = k; push(v, S); 

      for all w in adj(v)  do 

              if dfs[w]==0 then 

                            SCC (w); low[v] = min( low[v], low[w] ); 

              else if dfs[w]  < dfs[v]  && w  S then 

                            low[v] = min( low[v], dfs[w] ); 

     if low[v]==dfs[v] then  //base vertex of a component 

              pop(S) where dfs(u) ≥ dfs(v); // output 

} 
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        The Algorithm 
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Correctness 

Theorem. After the call to SCC(v) is complete it 
is a case that 
(1) low[v] has been correctly computed 
(2) all SCCs contained in the subtree rooted at v  
have been output. 

Proof by induction on calls. 

First we prove 1) and then 2). 

(1) low[v] correctly computed  

 for all w in adj(v)  do 
              if dfs[w]==0 then 
                            SCC (w); low[v] = min( low[v], low[w] ); 
              else if dfs[w]  < dfs[v]  && w  S then 
                            low[v] = min( low[v], dfs[w] ); 

Case a) w  S. Then there is a path w-v. Combining 
this path with edge (v,w) assures that v and w in 
the same component. 

Case b) w  S. Then 
the rec. call to w must 
have been completed.  

F G 

A B 

(2) all SCCs contained in the subtree rooted 
at v have been output. 

By lemma 2, v is a base vertex. 

We have to make sure that we pop only vertices from the 
same component. 

 if low[v]==dfs[v] then  //base vertex of a component 
              pop(S) where dfs(u) ≥ dfs(v); // output 

Let be another base vertex b that descends from v.   

Let assume that there is w (in the same component as v) that 
descends from both v and b.  

There must be a path w-v. 

By lemma 1 there is a path v-b. And also b-w. 

Cycle w–v–b-w. So, v and b are in the same component. 

Lemma 1. Let b be  a base in a component X, 
then any vX is a descendant of b and all they 
are on the path b-v. 

Proof. We know that either  
(1) v descends from b, or  
(2) b descends from v, or  
(3) neither of the above.  

(2) is impossible since b has the lowest dfs-num. 
Suppose (3). There is a path b-v (same component) 
Find the least common ancestor r of all vertices 
on b-v path. We claim path goes through r. 
If so, then dfs[r] < dfs[b]. But r and b are in the 
same component. (3) is impossible. 

Find the least common ancestor r of all vertices 
on b-v path. We claim path goes through r. 

Case 1. 

b v 

r 

Since dfs[b]<dfs[v], Tb and Tv are 
disjoint - there are cannot be an 
edge between them. 

Case 2. b and v in the same 
DFS tree. 

dfs tree 

b,v … 

r 

b-v path must touch at least 
two DFS trees, (r is the least) 

It follows, b-v path starts in one tree, goes through 
one or more another subtrees and come back. 

Impossible to come back, since dfs-num in one tree 
is less than in another. 


