
1

Graphs - II

Algorithms
G. Miller

V. Adamchik

CS 15-451 Spring 2014

 Carnegie Mellon University

Plan:

 Strongly Connected Components
 Tarjan’s Algorithm (1972)

Algorithm for Biconnected
Components

Maintain dfs and low numbers for each vertex.

The edges of an undirected graph are placed on a
stack as they are traversed.

When an articulation point is discovered, the
corresponding edges are on a top of the stack.

Therefore, we can output all biconnected
components during a single DFS run.

Algorithm for Biconnected
Components

for all v in V do dfs[v] = 0;

for all v in V do if dfs[v]==0 BCC(v);

k = 0; S – empty stack;

BCC(v) {

 k++; dfs[v] = k; low[v]=k;

 for all w in adj(v) do

 if dfs[w]==0 then

 push((v,w), S); BCC (w);

 low[v] = min(low[v], low[w]);

 if low[w] ≥ dfs[v] then pop(S) ;// output

 else if dfs[w] < dfs[v] && w  S then

 push((v,w), S); low[v] = min(low[v], dfs[w]);

 }

F G

A B C

H

D

I

1/1 2/2 3/3

4/4

Back edges

5/5 5/2 4/2

3/2

Vertex labels
dfs/low

low(A) = dfs(B)
Pop edges from a stack

6/6 7/7

8/8

8/1

7/1 6/1

2/1

Store edges on a
stack as you run DFS

B is an
articulation

point

Algorithm for
Biconnected Components

 DFS on Directed Graphs

Strongly connected vs. weakly connected

2

Strongly Connected Components

G is strongly connected if every pair (u, v) of

vertices is reachable from one another.

A strongly connected component (SCC) of G is a

maximal set of vertices C V such that for all

vertices in C are reachable.

Equivalent classes
partitioning of the vertices

Two vertices v and w are equivalent, denoted uv,
if there is a path from u to v and one from v to u.

The equivalent class of  is called a
strongly connected component.

The relation  is an equivalence relation.

Reflexivity v  v. A path of zero length exists.

Symmetry if v  u then u  v. By definition.

Transitivity if v  u and u  w then v  w
Join two paths to get one from v to w.

DAG of SCCs

Choose one vertex per equivalent class.
Two vertices are connected if the corresponding
components are connected by an edge.

The resulting
graph is a DAG. Applications…

social networks

Preamble

Def. A vertex is called a base if it has the
lowest dfs number in the SCC.

Lemma 2. A vertex is a base iff dfs[v] = low[v].

Lemma 1. Let b be a base in a component X,
then any vX is a descendant of b and all they
are on the path b-v.

Def. low[v] is the smallest dfs-number of a
vertex reachable by a back or cross edge from
the subtree of v.

Preamble

WLOG, we assume that there is a vertex in the
graph from which there are edges to each
other vertex.

If we start a DFS from that vertex, we will get
only one spanning tree.

If there is no such a vertex we can always add
one. This won’t change the other SCCs.

The Algorithm
for all v in V do dfs[v] = 0;

for all v in V do if dfs[v]==0 SCC(v);

k = 0; S – empty stack;

SCC(v) {

 k++; dfs[v] = k; low[v] = k; push(v, S);

 for all w in adj(v) do

 if dfs[w]==0 then

 SCC (w); low[v] = min(low[v], low[w]);

 else if dfs[w] < dfs[v] && w  S then

 low[v] = min(low[v], dfs[w]);

 if low[v]==dfs[v] then //base vertex of a component

 pop(S) where dfs(u) ≥ dfs(v); // output

}

3

 The Algorithm

F G

A B C

H

D

I

E

1/1 2/2 3/3

4/4 5/5 5/2 4/2

3/2

Vertex labels
dfs/low

6/6 7/7

8/8 9/9 8/7 9/7

6/1

I: low = dfs
pop dfs(v)≥7

Store vertices on a
stack as you run DFS

7/7

C on stack

2/1

C: low = dfs
pop dfs(v)≥1

Correctness

Theorem. After the call to SCC(v) is complete it
is a case that
(1) low[v] has been correctly computed
(2) all SCCs contained in the subtree rooted at v
have been output.

Proof by induction on calls.

First we prove 1) and then 2).

(1) low[v] correctly computed

 for all w in adj(v) do
 if dfs[w]==0 then
 SCC (w); low[v] = min(low[v], low[w]);
 else if dfs[w] < dfs[v] && w  S then
 low[v] = min(low[v], dfs[w]);

Case a) w  S. Then there is a path w-v. Combining
this path with edge (v,w) assures that v and w in
the same component.

Case b) w  S. Then
the rec. call to w must
have been completed.

F G

A B

(2) all SCCs contained in the subtree rooted
at v have been output.

By lemma 2, v is a base vertex.

We have to make sure that we pop only vertices from the
same component.

 if low[v]==dfs[v] then //base vertex of a component
 pop(S) where dfs(u) ≥ dfs(v); // output

Let be another base vertex b that descends from v.

Let assume that there is w (in the same component as v) that
descends from both v and b.

There must be a path w-v.

By lemma 1 there is a path v-b. And also b-w.

Cycle w–v–b-w. So, v and b are in the same component.

Lemma 1. Let b be a base in a component X,
then any vX is a descendant of b and all they
are on the path b-v.

Proof. We know that either
(1) v descends from b, or
(2) b descends from v, or
(3) neither of the above.

(2) is impossible since b has the lowest dfs-num.
Suppose (3). There is a path b-v (same component)
Find the least common ancestor r of all vertices
on b-v path. We claim path goes through r.
If so, then dfs[r] < dfs[b]. But r and b are in the
same component. (3) is impossible.

Find the least common ancestor r of all vertices
on b-v path. We claim path goes through r.

Case 1.

b v

r

Since dfs[b]<dfs[v], Tb and Tv are
disjoint - there are cannot be an
edge between them.

Case 2. b and v in the same
DFS tree.

dfs tree

b,v …

r

b-v path must touch at least
two DFS trees, (r is the least)

It follows, b-v path starts in one tree, goes through
one or more another subtrees and come back.

Impossible to come back, since dfs-num in one tree
is less than in another.

