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Graph Algorithms - 3 

Algorithm Design and Analysis 

Victor Adamchik CS 15-451       Spring 2014 

Lecture 13 Feb 12, 2014 Carnegie Mellon University The Shortest Path Problem 

The Shortest Path Problem 
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Given a positively weighted graph G with a source 
vertex s, find the shortest path from s to all other 
vertices in the graph. 
  

Greedy approach 

When algorithm proceeds all vertices are 
divided into two groups  
     - vertices whose shortest path from the    
     source is known 
     - vertices whose shortest path from the  
     source is NOT known 
 
Move vertices (shortest distance) one at a 
time from the unknown set to the known set. 

Maintain a PQ of distances from the source to 
a vertex. 

The Shortest Path Problem 
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             Complexity 

Let D(v) denote a length from the source s to 
vertex v. We store distances D(v) in a PQ. 
 
INIT: D(s) = 0;  D(v)=  
LOOP: 
Delete a node v from PQ using deleteMin() 
Update D(w) for all w in adj(v) using decreaseKey() 
 
 
D(w) = min[D(w), D(v) + c(v, w)]  

O(V) 

O(log V) 

O(log V) 

PQ has V vertices 

We do O(E) updates 

O (V Log V + E log V)  
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Assume that a unsorted array is 
used  instead of a priority queue.  

 
What would the algorithm's  
running time in this case? 

 

  PQ is a linear array 

 
findMin takes O(V)  - for one vertex 
findMin takes O(V2) - for all vertices 
 
Updating takes O(1)  - for one edge 
total edge adjustment O(E) 
 
the algorithm running time O(E + V2) 
 

Why Dijkstra’s algorithm  
does not work on graphs  
with negative weights? 
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The Bellman-Ford algorithm 

(1958) 

repeat V - 1 times: 
for all e in E: 
   update(e) 

The Bellman-Ford Algorithm 

for (k = 0; k < V; k++)  dist[k] = INFINITY; 
    
Queue q = new Queue(); 
dist[s] = 0; q.enqueue(s); 
while (!q.isEmpty()) 
 { 
    v = q.dequeue();  
    for each w in adj(v) do  
       if (dist[w] > dist[v] + weight[v,w]) { 
            dist[w] = dist[v] + weight[v,w]; 
            if (!q.isInQueue(w)) q.enqueue(w); 
        }} 

What is the worst-case complexity of 
the Bellman-Ford algorithm? 

 for (k = 0; k < V; k++)   
                dist[k] = INFINITY; 
    
Queue q = new Queue(); 
dist[s] = 0; q.enqueue(s); 
while (!q.isEmpty())  { 
    v = q.dequeue();  
    for each w in adj(v) do  
       if (dist[w] > dist[v] + weight[v,w]) { 
            dist[w] = dist[v] + weight[v,w]; 
            if (!q.isInQueue(w)) q.enqueue(w); 
        }} 

V 

E 

O(V E) 
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Graph with  a negative cycle? 
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How would you apply the Bellman-
Ford algorithm to find out if a 
graph has  a negative cycle? 

 

How would you apply the Bellman-Ford 
algorithm to find out if a graph has  a 

negative cycle? 

 

 

Do not stop after V-1 iteration,  

perform one more round. If there is  

such a cycle, then some distance will  

be reduced… 

Bellman-Ford 

Dynamic programming approach 

We will be counting the number of 
edges in the shortest path 

Dynamic programming approach 

For each node, find the length of the shortest path 
to t that uses at most 1 edge, or write 
down ∞ if there is no such path. 

Suppose for all v we have solved for length of the 
shortest path to t that uses k − 1 or fewer edges. 
How can we use this to solve for the shortest path 
that uses k or fewer edges? 

We go to some neighbor x of v, and then take the 
shortest path from x to t that uses k−1 or fewer 
edges. 

All-Pairs Shortest Paths (APSP) 

Given a weighted graph, find a 
shortest path from any vertex to 

 any other vertex.  

Note, no distinguished vertex 

All-Pairs Shortest Paths 

One approach: run Dijkstra's algorithm 
using every vertex as a source.  

Complexity: O(V E Log V) 

But what about negative weights… 

sparse: O(V2 Log V) 

 dense: O(V3 Log V) 
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APSP: Bellman-Ford’s 

Complexity : O(V2 E) 

Note, for a dense graph we have O(V4). 

APSP :  

Dynamic programming approach 

Floyd-Warshall, O(V3) 

We won’t discuss it… 

APSP: Johnson’s algorithm 

Complexity: O(V E + V E log V) 

for a dense graph -- O(V3 log V) . 

for a sparse graph -- O(V2 log V) . 

Johnson’s Algorithm 

It improves the runtime only when a 
graph has negative weights. 

A bird’s view: 
- Reweight the graph, so all weights are 
nonnegative (by running Bellman-Ford’s) 
- Run Dijkstra’s on all vertices 
 

Complexity: O(V E + V E log V) 

Johnson’s Algorithm: 
intuition 

The way to improve the runtime is to run 
Dijkstra’s from each vertex. 

But Dijkstra’s does not work on negative edges. 

So what about if we change the edge weight to 
be nonnegative? 

We have to be careful on changing the edge 
weight… to preserve the shortest path 

Wrong reweighting 
(adding the fix amount) 
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The actual shortest path to X is S-B-C-X 

Let us add 3 to all edges 
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Wrong reweighting 
 (adding the fix amount) 
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Shortest path to X is S-A-X 

Adding the fix amount does 
not work, since every 
shortest path has a 

different number of edges 

Johnson’s Algorithm: 
reweighting 

Every edge (v, u) with the cost w(v, u) is 
replaced by 
 

  w*(v, u) = w(v, u) + p(v) – p(u) 

where p(v) will be decided later. 

u 

w(v, u) = 2 

v 

p(v)=-2  p(u)=1 
w*(v, u) = 2 + (-2)  – 1                    

              =  - 1 

Johnson’s Algorithm: 
reweighting 

Theorem.  All paths between the same two 
vertices are reweighted by the same amount. 

Proof. 

Consider  path v = v1v2  …  vn = u 

Then we have 
w*(v,u)  = w*(v1, v2)  + … + w*(vn-1, vn)  

= w(v1, v2) + p(v1) – p(v2) +  
   w(v2, v3) + p(v2) – p(v3) + …  

w*(v, u)  = w(v, u) + p(v) – p(u) 

Telescoping 
sum 

Johnson’s reweighting changes  

any path between u and v by 
the same amount and  

therefore preserves the  

shortest path unchanged 

w*(v, u)  = w(v, u) + p(v) – p(u) 

Find vertex labeling P(v) 
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First we need to create a 
new vertex and connect it to 
all other vertices with zero 
weight. s 

Note this change in the 
graph won’t change the 
shortest distances between 
vertices. 
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Running SSSP 
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Next we run Bellman-Ford’s 
starting at vertex s. 

Shortest Path s-a is 0 

s-b is -2 

0 

-3 

s-c is -3 

-2 

and so on… 
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Now we define p(v) as the shortest distance s-v. 

Johnson’s Reweighting 
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Here we redraw the example 
by using 
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w*(v, u)  = w(v, u) + p(v) – p(u) 

Edge (a,b): -2+0-(-2) = 0 

0 

0 

Edge (b,c): -1+(-2)-(-3) = 0 
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Edge (z,x): 1+0-(-1) = 2 
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New graph 
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After Johnson’s reweighting 
we get a new graph with  
non-negative weights. 
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Remember, Johnson’s 
reweighting preserves the 
shortest path.  

Now we can use Dijkstra’s 

            Johnson’s Algorithm: 
reweighting 

Theorem.  After reweighting every edge has a 
nonnegative cost. 

Proof. Consider edge (v, u) 

p(v) is the shortest distance from s to v 

w*(v, u)  = w(v, u) + p(v) – p(u) 

p(u) is the shortest distance from s to u 

p(u) ≤ p(v) + w(v, u)   v   u   

s   
since the shortest path s-u cannot 
be longer then p(v) + (v, u).  
QED 

Johnson’s Algorithm 

1. Add a new vertex s and connect it with all 
other vertices. 
2. Run Bellman-Ford’s algorithm from s to 
compute p(v). 

Note that Bellman-Ford’s algorithm will 
correctly report if the original graph has 
a negative cost cycle. 

3. Reweight all edges: w*(v,u) =w(v,u)+p(v)–p(u) 

4. Run Dijkstra’s algorithm from all vertices 

5. Compute the actual distances by subtracting 
p(v)–p(u) 

Complexity 

1. Add a new vertex s and connect it with all 
other vertices. 

2. Run Bellman-Ford’s algorithm from s to 
compute p(v). 

3. Reweight all edges: w*(v,u) =w(v,u)+p(v)–p(u) 

4. Run Dijkstra’s algorithm from all vertices 

5. Compute the actual distances by subtracting 
p(v)–p(u) 

O(E) 

O(V) 

O(V E) 

O(E) 

O(V E log V) 

Total: O(V E log V) 
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Johnson’s Algorithm 

It shines for sparse graphs with negative edges 

O(V2 log V) 

Better than Floyd-Warshall’s, which is O(V3) 


