
1

Graph Algorithms - 3

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 13 Feb 12, 2014 Carnegie Mellon University The Shortest Path Problem

The Shortest Path Problem

 S

 1

 6

 7

 2

 4

 5

20

24

14

18

16

30

5

9

44

2

16

 3 11

5

6

19

Given a positively weighted graph G with a source
vertex s, find the shortest path from s to all other
vertices in the graph.

Greedy approach

When algorithm proceeds all vertices are
divided into two groups
 - vertices whose shortest path from the
 source is known
 - vertices whose shortest path from the
 source is NOT known

Move vertices (shortest distance) one at a
time from the unknown set to the known set.

Maintain a PQ of distances from the source to
a vertex.

The Shortest Path Problem

s

 1

 6

 7

 2

 4

 5

20

24

14

18

16

30

5

9

44

2

16

 3 11

5

6

19


9

14

16

32

36

60

 Complexity

Let D(v) denote a length from the source s to
vertex v. We store distances D(v) in a PQ.

INIT: D(s) = 0; D(v)= 
LOOP:
Delete a node v from PQ using deleteMin()
Update D(w) for all w in adj(v) using decreaseKey()

D(w) = min[D(w), D(v) + c(v, w)]

O(V)

O(log V)

O(log V)

PQ has V vertices

We do O(E) updates

O (V Log V + E log V)

2

Assume that a unsorted array is
used instead of a priority queue.

What would the algorithm's
running time in this case?

 PQ is a linear array

findMin takes O(V) - for one vertex
findMin takes O(V2) - for all vertices

Updating takes O(1) - for one edge
total edge adjustment O(E)

the algorithm running time O(E + V2)

Why Dijkstra’s algorithm
does not work on graphs
with negative weights?

5

B X

S A
5

3

-9

The Bellman-Ford algorithm

(1958)

repeat V - 1 times:
for all e in E:
 update(e)

The Bellman-Ford Algorithm

for (k = 0; k < V; k++) dist[k] = INFINITY;

Queue q = new Queue();
dist[s] = 0; q.enqueue(s);
while (!q.isEmpty())
 {
 v = q.dequeue();
 for each w in adj(v) do
 if (dist[w] > dist[v] + weight[v,w]) {
 dist[w] = dist[v] + weight[v,w];
 if (!q.isInQueue(w)) q.enqueue(w);
 }}

What is the worst-case complexity of
the Bellman-Ford algorithm?

 for (k = 0; k < V; k++)
 dist[k] = INFINITY;

Queue q = new Queue();
dist[s] = 0; q.enqueue(s);
while (!q.isEmpty()) {
 v = q.dequeue();
 for each w in adj(v) do
 if (dist[w] > dist[v] + weight[v,w]) {
 dist[w] = dist[v] + weight[v,w];
 if (!q.isInQueue(w)) q.enqueue(w);
 }}

V

E

O(V E)

3

Graph with a negative cycle?

4

B X

S A
3

1

-9

How would you apply the Bellman-
Ford algorithm to find out if a
graph has a negative cycle?

How would you apply the Bellman-Ford
algorithm to find out if a graph has a

negative cycle?

Do not stop after V-1 iteration,

perform one more round. If there is

such a cycle, then some distance will

be reduced…

Bellman-Ford

Dynamic programming approach

We will be counting the number of
edges in the shortest path

Dynamic programming approach

For each node, find the length of the shortest path
to t that uses at most 1 edge, or write
down ∞ if there is no such path.

Suppose for all v we have solved for length of the
shortest path to t that uses k − 1 or fewer edges.
How can we use this to solve for the shortest path
that uses k or fewer edges?

We go to some neighbor x of v, and then take the
shortest path from x to t that uses k−1 or fewer
edges.

All-Pairs Shortest Paths (APSP)

Given a weighted graph, find a
shortest path from any vertex to

 any other vertex.

Note, no distinguished vertex

All-Pairs Shortest Paths

One approach: run Dijkstra's algorithm
using every vertex as a source.

Complexity: O(V E Log V)

But what about negative weights…

sparse: O(V2 Log V)

 dense: O(V3 Log V)

4

APSP: Bellman-Ford’s

Complexity : O(V2 E)

Note, for a dense graph we have O(V4).

APSP :

Dynamic programming approach

Floyd-Warshall, O(V3)

We won’t discuss it…

APSP: Johnson’s algorithm

Complexity: O(V E + V E log V)

for a dense graph -- O(V3 log V) .

for a sparse graph -- O(V2 log V) .

Johnson’s Algorithm

It improves the runtime only when a
graph has negative weights.

A bird’s view:
- Reweight the graph, so all weights are
nonnegative (by running Bellman-Ford’s)
- Run Dijkstra’s on all vertices

Complexity: O(V E + V E log V)

Johnson’s Algorithm:
intuition

The way to improve the runtime is to run
Dijkstra’s from each vertex.

But Dijkstra’s does not work on negative edges.

So what about if we change the edge weight to
be nonnegative?

We have to be careful on changing the edge
weight… to preserve the shortest path

Wrong reweighting
(adding the fix amount)

2

B X

S A
2

3

3
C

-3

The actual shortest path to X is S-B-C-X

Let us add 3 to all edges

5

Wrong reweighting
 (adding the fix amount)

B X

S A
5

6

C

5

0 6

Shortest path to X is S-A-X

Adding the fix amount does
not work, since every
shortest path has a

different number of edges

Johnson’s Algorithm:
reweighting

Every edge (v, u) with the cost w(v, u) is
replaced by

 w*(v, u) = w(v, u) + p(v) – p(u)

where p(v) will be decided later.

u

w(v, u) = 2

v

p(v)=-2 p(u)=1
w*(v, u) = 2 + (-2) – 1

 = - 1

Johnson’s Algorithm:
reweighting

Theorem. All paths between the same two
vertices are reweighted by the same amount.

Proof.

Consider path v = v1v2  …  vn = u

Then we have
w*(v,u) = w*(v1, v2) + … + w*(vn-1, vn)

= w(v1, v2) + p(v1) – p(v2) +
 w(v2, v3) + p(v2) – p(v3) + …

w*(v, u) = w(v, u) + p(v) – p(u)

Telescoping
sum

Johnson’s reweighting changes

any path between u and v by
the same amount and

therefore preserves the

shortest path unchanged

w*(v, u) = w(v, u) + p(v) – p(u)

Find vertex labeling P(v)

c

a

x

b

4
-2

-1

y

z

2 -3

1 -4

First we need to create a
new vertex and connect it to
all other vertices with zero
weight. s

Note this change in the
graph won’t change the
shortest distances between
vertices.

6

Running SSSP

c

a

x

b

4
-2

-1

y

z

2 -3

1 -4

s

Next we run Bellman-Ford’s
starting at vertex s.

Shortest Path s-a is 0

s-b is -2

0

-3

s-c is -3

-2

and so on…

-1

 0

-6

Now we define p(v) as the shortest distance s-v.

Johnson’s Reweighting

c

a

x

b

4
-2

-1

y

z

2 -3

1 -4

Here we redraw the example
by using

s

0

-3

-2

-1

 0

-6

w*(v, u) = w(v, u) + p(v) – p(u)

Edge (a,b): -2+0-(-2) = 0

0

0

Edge (b,c): -1+(-2)-(-3) = 0

0

Edge (z,x): 1+0-(-1) = 2

2

0

1

2

New graph

c

a

x

b

y

z

After Johnson’s reweighting
we get a new graph with
non-negative weights.

0

0

0

2

0

1

2

Remember, Johnson’s
reweighting preserves the
shortest path.

Now we can use Dijkstra’s

 Johnson’s Algorithm:
reweighting

Theorem. After reweighting every edge has a
nonnegative cost.

Proof. Consider edge (v, u)

p(v) is the shortest distance from s to v

w*(v, u) = w(v, u) + p(v) – p(u)

p(u) is the shortest distance from s to u

p(u) ≤ p(v) + w(v, u) v u

s
since the shortest path s-u cannot
be longer then p(v) + (v, u).
QED

Johnson’s Algorithm

1. Add a new vertex s and connect it with all
other vertices.
2. Run Bellman-Ford’s algorithm from s to
compute p(v).

Note that Bellman-Ford’s algorithm will
correctly report if the original graph has
a negative cost cycle.

3. Reweight all edges: w*(v,u) =w(v,u)+p(v)–p(u)

4. Run Dijkstra’s algorithm from all vertices

5. Compute the actual distances by subtracting
p(v)–p(u)

Complexity

1. Add a new vertex s and connect it with all
other vertices.

2. Run Bellman-Ford’s algorithm from s to
compute p(v).

3. Reweight all edges: w*(v,u) =w(v,u)+p(v)–p(u)

4. Run Dijkstra’s algorithm from all vertices

5. Compute the actual distances by subtracting
p(v)–p(u)

O(E)

O(V)

O(V E)

O(E)

O(V E log V)

Total: O(V E log V)

7

Johnson’s Algorithm

It shines for sparse graphs with negative edges

O(V2 log V)

Better than Floyd-Warshall’s, which is O(V3)

