
1

Graph Algorithms - 4

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 14 Feb 14, 2014 Carnegie Mellon University

Plan:

 Min-cost Spanning Tree Algorithms:

 - Prim’s (review)
 - Arborescence problem
 Kleinberg-Tardos, Ch. 4

The Minimum Spanning Tree

for Undirected Graphs

Find a spanning tree of minimum
total weight.

The weight of a spanning tree is the
sum of the weights on all the edges
which comprise the spanning tree.

Boruvka’s Algorithm (1926)

Kruskal’s Algorithm (1956)

 Prim's Algorithm (1957)

The Minimum Spanning Tree

First described by Jarnık in a 1929 letter

to Boruvka.

Rediscovered by Kruskal in 1956, by Prim in

1957, by Loberman and Weinberger in 1957,

and finally by Dijkstra in 1958.

Prim's Algorithm

Greedy algorithm that builds a tree
one VERTEX at a time.

- Start with an arbitrary vertex as

component C

- Expand C by adding a new vertex having

the minimum weight edge with exactly one

end point in C.

- Continue to grow the tree until C gets

all vertices.

Prim's Algorithm

algorithm builds a tree one VERTEX at a time.

2

Prim's Algorithm

B C

E F

D

A

1 4

7

3

1

2

8

5
2

C={a}

d-1 c-1 b-4 e-oo f-oo

heap

decleteMin

Prim's Algorithm

B C

E F

D

A

1 4

7

3

1

2

8

5
2

C={a,d}

c-1 b-4 e-oo f-oo

heap

Prim's Algorithm

B C

E F

D

A

1 4

7

3

1

2

8

5
2

C={a,d}

c-1 b-4 e-5 f-7

heap

decreaseKey

Prim's Algorithm

b c

e f

d

a

1 4

7

3

1

2

8

5
2

C={a,d,c,b,e,f}

Weight = 1+1+2+2+3 = 9

Lemma: Let X be any subset of the
vertices of G, and let edge e be the
smallest edge connecting X to G-X.
Then e is part of the minimum spanning
tree.

Property of the MST What is the worst-case

runtime complexity of

Prim's Algorithm?

We run deleteMin V times
We update the queue E times

O(V*log V + E*log V)

deleteMin decreaseKey

O(1) – Fibonacci heap

3

The Minimum Spanning Tree

for Directed Graphs

x

1

2

3

y

z

Start at X and follow the greedy approach

We will get a tree of size 5,
though the min is 4.

However there is even a smaller
subset of edges - 3

The Minimum Spanning Tree

for Directed Graphs

x

1

2

3

y

z

This example exhibits two
problems

What is the meaning of MST

for directed graphs?

How would you find it?

Clearly, we want to have a rooted tree, in
which we can reach any vertex staring at
the root

Clearly, the greedy approach of Prim’s
does not work

Arborescences

Def. Given a digraph G = (V, E) and a vertex r∈V,
an arborescence (rooted at r) is a treeT s.t.

T is a spanning tree of G if we ignore the
direction of edges.

There is a directed unique path in T from r to
each other node v ∈ V.

r

Given a digraph G, find an
arborescence rooted at r

(if one exists)

Run DFS or BFS

Arborescences

Theorem. A subgraph T of G is an arborescence
rooted at r iff T has no directed cycles and each
node v ≠ r has exactly one entering edge.

Proof.

⇒) Trivial.

⇐) Start a vertex v and follow edges in
backward direction.

Since no cycles you eventually reach r.

Min-cost Arborescences

Given a digraph G with a root node r and with a
nonnegative cost on each edge, compute an
arborescence rooted at r of minimum cost.

r

1
5

2

2

7

3 2

4

6

We assume that all vertices are reachable from r.

4

Min-cost Arborescences

Observation 1. This is not a min-cost spanning
tree. It does not necessarily include the
cheapest edge.

Running Prim’s on undirected graph won’t help.

Running an analogue of Prim’s for directed graph
won’t help either

r

1
5

2

7

3

Min-cost Arborescences

Observation 2. This is not a shortest-path tree

r

Edges rb and rc won’t be in the min-cost
arborescence tree

1.5

1.5

1

1
1 a

b

c

Edge reweighting

For each v ≠ r, let δ(v) denote the min cost of
any edge entering v.

r
1

5
2

2

7

3 2

4

6
x

The reduced cost w*(u, v) = w(u, v) – δ(v) ≥ 0

In the picture, δ(x) is 1.

1

0

y

δ(y) is 5.

0

a

δ(a) is 3.

0

4

b δ(b) is 3.
0

0 2

0

w*(u, v) = w(u, v) – δ(v)

Lemma. An arborescence in a digraph has the
min-cost with respect to w iff it has the min-
cost with respect to w*.

Proof. Let T be an arborescence in G(V,E).

Compute w(T) – w*(T)

The last term does not depend on T. QED

δ(v) - min cost of any
edge entering v

r\VvTe

δ(v)(e)*ww(e)(T)*ww(T)

Algorithm: intuition

Let G* denote a new graph after reweighting.

If B is an arborescence, we are done.

For every v≠r in G* pick 0-weight edge entering v.

Let B denote the set of such edges.

Note B is the min-cost since all edges have 0 cost.

If B is NOT an arborescence…

When B is not an arborescence?

How can it happen B is not an
arborescence?

when it has a directed cycle or several cycles…

r

Note, only a single edge can enter a vertex

5

How can it happen B is not an
arborescence?

a directed cycle…

It must be a cycle

Vertex contraction

We contract every cycle into a supernode
Dashed edges and nodes are from the original
graph G.

Recursively solve the problem in contracted graph

z

y

x
z

y

x

The Algorithm
For each v≠r compute δ(v) – the mincost of edges entering v.

For each v≠r compute w*(u, v) = w(u, v) – δ(v).

For each v≠r choose 0-cost edge entering v.

Let us call this subset of edges – B.

If B forms an arborescence, we are done.

else

Contract every cycle C to a supernode

Repeat the algorithm

Extend an arborescence by adding all but one edge of C.

Return

Complexity

At most V contractions (since each one reduces the
number of nodes).

Finding and contracting the cycle C takes O(E).

Transforming T' into T takes O(E) time.

Total - O(V E).

Faster for Fibonacci heaps.

r

1
5

2

2

7

3 2

4

6

r
1

5
2

2

7

3 2

4

6
x

1

0

y

0

a
0

4

b
0

1 2

0

x

y a b

c

c

Cycle
AXY

Take
0-weight
edge for each
vertex

reweight
δ(a) is 3

r
1

5
2

2

7

3 2

4

6 x
1

0

y

0

a
0

4

b
0

1 2

0
c

r

2

2

4

6
x

1

4

b

1 2

0
c

Contract
AXY

r

2

2

4

6
x

0

3

b

0 2

0
c

r
1

5
2

2

7

3 2

4

6
x

1

0

y

0

a
0

4

b
0

1 2

0
c

reweight
δ(x) is 1

Take
0-weight
edges.
break ties
arbitrarily

0

0

6

r
2 6

x

b

c

Extend an
arborescence

2

a y

r
2 6

x

b

c

2

a y

By removing
an edge from
a cycle

3

5

Correctness
Lemma. Let C be a cycle in G consisting of 0-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

r
1

5
2 7

3 2

4

x

0

y

0

a
0

4

b
0

1 2

0
c

1

Correctness
Lemma. Let C be a cycle in G consisting of 0-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

Proof. Let T be a min-cost arborescence
that has more than one edge enters C

r
x

b

a Let (a,x) lies on a shortest
path from r.

We delete all edges in T
that enters C except (a,b)

We add all edges in C except the
one that enters x.

Correctness
Lemma. Let C be a cycle in G consisting of 0-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

Claim: that new tree T* is a mincost arborescence

r
x

b

0

1. cost(T*) ≤ cost(T) since we add 0-cost edges
a

0
0

2. T* has exactly one edge
entering each vertex

3. T* has no cycles.

