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Graph Algorithms - 4 

Algorithm Design and Analysis 

Victor Adamchik CS 15-451       Spring 2014 

Lecture 14 Feb 14, 2014 Carnegie Mellon University 

Plan: 
 
 Min-cost Spanning Tree Algorithms: 
 
 - Prim’s  (review) 
 - Arborescence problem 
                                                   Kleinberg-Tardos, Ch. 4 

The Minimum Spanning Tree 

for Undirected Graphs 

Find a spanning tree of minimum  
total weight. 

The weight of a spanning tree is the 
sum of the weights on all the edges 
which comprise the spanning tree. 

 

 

         

  
Boruvka’s Algorithm (1926) 

Kruskal’s Algorithm (1956) 

           Prim's Algorithm (1957)     

 

The Minimum Spanning Tree 

First described by Jarnık in a 1929 letter 

to Boruvka.  

Rediscovered by Kruskal in 1956, by Prim in  

1957, by Loberman and Weinberger in 1957,  

and finally by Dijkstra in 1958.  

Prim's Algorithm 

Greedy algorithm that builds a tree  
one VERTEX at a time.  

-  Start with an arbitrary vertex as  

component C 

- Expand C by adding a new vertex having  

the minimum weight edge with exactly one  

end point in C. 

-  Continue to grow the tree until C gets  

all vertices. 

Prim's Algorithm 

algorithm builds a tree one VERTEX at a time.  
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Prim's Algorithm 
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Weight = 1+1+2+2+3 = 9 
 

Lemma: Let X be any subset of the 
vertices of G, and let edge e be the 
smallest edge connecting X to G-X. 
Then e is part of the minimum spanning 
tree.  

Property of the MST What is the worst-case  

runtime complexity of  

Prim's Algorithm? 

 
 

We run deleteMin V times 
We update the queue E times 

 
O(V*log V + E*log V) 

deleteMin decreaseKey 

O(1) – Fibonacci heap 
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The Minimum Spanning Tree 

for Directed Graphs 
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Start at X and follow the greedy approach 

We will get a tree of size 5,  
though the min is 4. 

However there is even a smaller 
subset of edges - 3 

The Minimum Spanning Tree 

for Directed Graphs 
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This example exhibits two 
problems 

What is the meaning of MST  

for directed graphs? 

How would you find it? 

Clearly, we want to have a rooted tree, in 
which we can reach any vertex staring at 
the root 

Clearly, the greedy approach of Prim’s 
does not work 

Arborescences 

Def. Given a digraph G = (V, E) and a vertex r∈V, 
an arborescence (rooted at r) is a treeT s.t. 

T is a spanning tree of G if we ignore the 
direction of edges. 

There is a directed unique path in T from r to 
each other node v ∈ V. 

r 

Given a digraph G, find an 
arborescence rooted at r  

(if one exists) 

  

Run DFS or BFS 

Arborescences 

Theorem. A subgraph T of G is an arborescence 
rooted at r iff T has no directed cycles and each 
node v ≠ r has exactly one entering edge.  

Proof. 

⇒)  Trivial. 

⇐)  Start a vertex v and follow edges in 
backward direction.  

Since no cycles you eventually reach r. 

Min-cost Arborescences 

Given a digraph G with a root node r and with a 
nonnegative cost on each edge, compute an 
arborescence rooted at r of minimum cost. 
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We assume that all vertices are reachable from r. 
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Min-cost Arborescences 

Observation 1. This is not a min-cost spanning 
tree. It does not necessarily include the 
cheapest edge. 

Running Prim’s on undirected graph won’t help. 

Running an analogue of Prim’s for directed graph 
won’t help either 

r 

1 
5 

2 

7 

3 

Min-cost Arborescences 

Observation 2. This is not a shortest-path tree 

r 

Edges rb and rc won’t be in the min-cost 
arborescence tree 
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Edge reweighting 

For each v ≠ r, let δ(v) denote the min cost of 
any edge entering v. 
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The reduced cost w*(u, v) = w(u, v) – δ(v) ≥ 0  

In the picture, δ(x) is 1. 
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δ(y) is 5. 
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w*(u, v) = w(u, v) – δ(v) 

Lemma. An arborescence in a digraph has the 
min-cost with respect to w iff it has the min-
cost with respect to w*. 

Proof. Let T be an arborescence in G(V,E). 

Compute w(T) – w*(T) 

The last term does not depend on T. QED 

δ(v) - min cost of any 
edge entering v 

r\VvTe

δ(v)(e)*ww(e)(T)*ww(T)

Algorithm: intuition 

Let G* denote a new graph after reweighting. 

If B is an arborescence, we are done. 

For every v≠r in G* pick 0-weight edge entering v. 

Let B denote the set of such edges. 

Note B is the min-cost since all edges have 0 cost. 

If B is NOT an arborescence… 

When B is not an arborescence? 

How can it happen B is not an 
arborescence? 

when it has a directed cycle or several cycles… 

r 

Note, only a single edge can enter a vertex 
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How can it happen B is not an 
arborescence? 

a directed cycle… 

It must be a cycle 

Vertex contraction 

We contract every cycle into a supernode 
Dashed edges and nodes are from the original 
graph G. 

Recursively solve the problem in contracted graph 
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The Algorithm 
For each v≠r compute δ(v) – the mincost of edges entering v.  

For each v≠r compute w*(u, v) = w(u, v) – δ(v).  

For each v≠r choose 0-cost edge entering v. 

Let us call this subset of edges – B. 

If B forms an arborescence, we are done. 

else 

Contract every cycle C to a supernode  

Repeat the algorithm  

Extend  an arborescence by adding all but one edge of C. 

Return 

Complexity 

At most V contractions (since each one reduces the 
number of nodes). 

Finding and contracting the cycle C takes O(E). 

Transforming T' into T takes O(E) time. 

Total - O(V E). 

Faster for Fibonacci heaps. 
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Cycle 
AXY 

Take  
0-weight  
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vertex 

reweight 
δ(a) is 3 
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δ(x) is 1 
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Extend an 
arborescence 
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By removing 
an edge from 
a cycle 
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Correctness 
Lemma. Let C be a cycle in G consisting of 0-cost 
edges. There exists a mincost arborescence rooted 
at r that has exactly one edge entering C. 
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Correctness 
Lemma. Let C be a cycle in G consisting of 0-cost 
edges. There exists a mincost arborescence rooted 
at r that has exactly one edge entering C. 

Proof. Let T be a min-cost arborescence 
that has more than one edge enters C 

r 
x 

b 

a Let (a,x) lies on a shortest 
path from r. 

We delete all edges in T 
that enters C except (a,b) 

We add all edges in C except the 
one that enters x. 

Correctness 
Lemma. Let C be a cycle in G consisting of 0-cost 
edges. There exists a mincost arborescence rooted 
at r that has exactly one edge entering C. 

Claim: that new tree T* is a mincost arborescence 
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1. cost(T*) ≤ cost(T) since we add 0-cost edges  
a 

0 
0 

2. T* has exactly one edge 
entering each vertex 

3. T* has no cycles. 


