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Graph Algorithms - 4

Plan:
Min-cost Spanning Tree Algorithms:
- Prim's (review)

- Arborescence problem
Kleinberg-Tardos, Ch. 4

The Minimum Spanning Tree
for Undirected Graphs

x Find a spanning tree of minimum
total weight.

The weight of a spanning tree is the
sum of the weights on all the edges
which comprise the spanning tree.

The Minimum Spanning Tree
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Prim's Algorithm

Greedy algorithm that builds a tree
one VERTEX at a time.

First described by Jarnik in a 1929 letter
to Boruvka.

Rediscovered by Kruskal in 1956, by Prim in
1957, by Loberman and Weinberger in 1957,
and finally by Dijkstra in 1958.

Prim's Algorithm
algorithm builds a tree one VERTEX at a time.

- Start with an arbitrary vertex as
component C

- Expand C by adding a new vertex having
the minimum weight edge with exactly one
end point in C.

- Continue to grow the tree until C gets
all vertices.




Prim's Algorithm

C={a}
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Prim's Algorithm

C={a,d}
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Prim's Algorithm

C={a,d.c,b.ef}
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Weight = 1+1+2+2+3 = 9

Property of the MST

Lemma: Let X be any subset of the
vertices of G, and let edge e be the
smallest edge connecting X to 6-X.
Then e is part of the minimum spanning
tree.

’l What is the worst-case
N runtime complexity of

® Prim's Algorithm?

We run deleteMin V times
We update the queue E times

O(V*Iog V + E*log V)

deleTeMm decreaseKey
O(1) - Fibonacci heap




The Minimum Spanning Tree
for Directed Graphs
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Start at X and follow the greedy approach
We will get a tree of size 5,
though the min is 4.

However there is even a smaller
subset of edges - 3

The Minimum Spanning Tree
for Directed Graphs

This example exhibits two
problems 2

What is the meaning of MST 3 1
for directed graphs?
Clearly, we want to have a rooted tree, in

which we can reach any vertex staring at
the root

How would you find it?

Clearly, the gLr'eedy approach of Prim's
does not wor

Arborescences

Def. Given a digraph 6 = (V, E) and a vertex reV,
an arborescence (rooted at r) is a treeT s.t.

T is a spanning tree of G if we ignore the
direction of edges.

There is a directed unique path in T from r to
each other node v e V.

Given a digraph 6, find an

arborescence rooted at r
(if one exists)

Run DFS or BFS

L

Arborescences

Theorem. A subgraph T of G is an arborescence
rooted at r iff T has no directed cycles and each
node v # r has exactly one entering edge.

Proof.

=) Trivial.

&) Start a vertex v and follow edges in
backward direction.

Since no cycles you eventually reach r.

Min-cost Arborescences

Given a digraph G with a root node r and with a
nonnegative cost on each edge, compute an
arborescence rooted at r of minimum cost.

We assume that all vertices are reachable from r.




Min-cost Arborescences
Observation 1. This is not a min-cost spanning

tree. It does not necessarily include the
cheapest edge.

Running Prim's on undirected graph won't help.

Running an analogue of Prim's for directed graph
won't help either

Min-cost Arborescences

Observation 2. This is hot a shortest-path tree

Edges rb and rc won't be in the min-cost
arborescence free

Edge reweighting

For each v 2 r, let 8(v) denote the min cost of
any edge entering v.

In the picture, 8(x) is 1.

The reduced cost w™(u, v) = w(u, v) - 8(v) 20
3(y) is 5.
d(a) is 3.
d(b) is 3.

w™(u, v) = w(u, v) - 3(v)

Lemma. An arborescence in a digraph has the
min-cost with respect to w iff it has the min-
cost with respect to w*.

Proof. Let T be an arborescence in 6(V,E).

8(v) - min cost of any
CompuTe W(T) - W*(T) edge entering v

w(T)-w*(T) =D w(e)-w*(e)= > 8(v)

eeT veV\r

The last term does not depend on T. QED

Algorithm: intuition
Let 6* denote a new graph after reweighting.
For every vzr in G* pick O-weight edge entering v.
Let B denote the set of such edges.

If B is an arborescence, we are done.

Note B is the min-cost since all edges have O cost.

If B is NOT an arborescence...

When B is not an arborescence?

How can it happen B is not an
arborescence?

Note, only a single edge can enter a vertex

%
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when it has a directed cycle or several cycles...




How can it happen B is not an
arborescence?

1%

0

It must be a cycle

a directed cycle...

Vertex contraction

We contract every cycle into a supernode
Dashed edges and nodes are from the original
graph 6.

% (@) X O
Y
N/

Recursively solve the problem in contracted graph

The Algorithm

For each vzr compute §(v) - the mincost of edges entering v.
For each vzr compute w'(u, v) = w(u, v) - 3(v).
For each vzr choose 0-cost edge entering v.
Let us call this subset of edges - B.
If B forms an arborescence, we are done.
else
Contract every cycle C to a supernode
Repeat the algorithm
Extend an arborescence by adding all but one edge of C.

Return

Complexity

At most V contractions (since each one reduces the
number of nodes).

Finding and contracting the cycle C takes O(E).

Transforming T' into T takes O(E) time.

Total - O(V E).

Faster for Fibonacci heaps.

reweight
d(a) is 3

Take
O-weight
edge for eac
vertex

Cycle
AXY

Contract
AXY

reweight
8(x)is 1

Take
O-weight
edges.
break ties
arbitrarily
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Correctness

Lemma. Let C be a cycle in G consisting of 0-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

Extend an
arborescence
© O)
By removing
an edge from
acycle 2 6
B Q) @)
5 2
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Correctness

Lemma. Let C be a cycle in G consisting of 0-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

Proof. Let T be a min-cost arborescence
that has more than one edge enters C

Let (a,x) lies on a shortest
path from r. © @

We delete all edges in T
that enters C except (a,b)

We add all edges in C except the
one that enters x.

Correctness

Lemma. Let C be a cycle in G consisting of O-cost
edges. There exists a mincost arborescence rooted
at r that has exactly one edge entering C.

Claim: that new tree T* is a mincost arborescence

1. cost(T*) < cost(T) since we add O-cost edges

©
2. T has exactly one edge
entering each vertex

3. T* has no cycles.




