
1

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 38 Apr 23, 2014 Carnegie Mellon University

Approximation Algorithms - II

P  NP

Plan:

 Set Cover
 MAX-SAT

Set Covering Problem

Given a collection of
subsets

 U ={S1, …, Sm}

Find a min-size subset C
such that C covers U.

Famous NP-complete
problem

Visualizing Set Cover
S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6},
S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3

6 5

4

2

Visualizing Set Cover
S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6},
S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3

6 5

4

2

a min-size cover
consists of three
subsets

Greedy Algorithm

U = C [empty cover]

C = {}

While there is uncovered element

Find the subset Sk covers the most elems

U  U - Sk

C C  Sk

Return C

2

How Good of an Approximation?

We’d like to compare the number of subsets
returned by the greedy algorithm to the optimal

The optimal is unknown, however, if it consists
of k subsets, then any part of the universe can
be covered by k subsets!

How Good of an Approximation?

Theorem. If the optimal solution uses k sets,
the greedy algorithm finds a solution with at
most k ln n sets.

Proof. Since the optimal solution uses k sets,
there must some set that covers at least a 1/k

fraction of it.

Therefore, after the first iteration n – n/k
elems left.

Theorem. If the optimal solution uses k sets,
the greedy algorithm finds a solution with at
most k ln n sets.

Proof. (contd)

The algo chooses the most of the elems left

Thus, after the second iteration there are

 n – n/k - (n – n/k)/k elems left

which is (n – n/k)/k

 Observe, n – n/k - (n – n/k)/k = n (1-1/k)2

Theorem. If the optimal solution uses k sets,
the greedy algorithm finds a solution with at
most k ln n sets.

Proof. (contd)

More generally, after y rounds, there are at most

n (1-1/k)
y

elems left.

Choosing y = k ln n, we get

n (1-1/k)
y = n (1-1/k)

k y/k ≤ n e
-y/k= n e

-ln n = 1

MAX-SAT

Given a CNF formula (like in SAT), try
to maximize the number of

clauses satisfied.

CNF is a conjunction of clauses, where
each clause is a disjunction of literals
(X1  X2  …  Xk).

Famous NP-complete problem.

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3, then
there is a simple randomized algorithm that can
satisfy at least a 7/8 fraction of clauses.

Proof. Try a random assignment to the variables.

Since there is only one out of 8 combinations
that can make it false, the probability of the clause
being false is 1/8.

Pr[clause is false] = ?

3

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3, then
there is a simple randomized algorithm that can
satisfy at least a 7/8 fraction of clauses.

Proof. (cont)

So if there are m clauses total, the expected
number satisfied is (7/8) m.

If the assignment satisfies less, just repeat.

With high probability it won't take too many tries
before you do at least as well as the expectation.

Exactly-3-SAT Approximation

With high probability it won't take too many tries
before you do at least as well as the expectation.

Proof. (cont)

Let Z be the random variable denoting the number
of clauses satisfied by a random assignment.

Let pk = Pr[Z = k]

m
8

7
E[Z]

mk0
kp k

mk7/8m
k

7/8mk0
k p kp k

m xp m
mk7/8m

k

m x)-m(8
1

8
7

It follows,
m 8

1
X

7/8mk0
k8

1
8
7 p -m)(

Exactly-3-SAT Approximation

Theorem. If every clause has size exactly 3, then
there is a simple randomized algorithm that can
satisfy at least a 7/8 fraction of clauses.

Theorem (Hastad, 1997).

If there is an c-approximation with c >7/8,

then P = NP.

What about MAX-SAT in general?

clauses in expectation.

Suppose we have a CNF formula of m clauses, with
m1 clauses of size 1, m2 of size 2, etc., and
m = m1 + m2 + …

Theorem. Then a random assignment satisfies

OPT
2

1
m

2

1
)

2

1
(1m

j
jj

j
j

Note

)
2

1
(1m

j
j

j

Deterministic SAT Approximation

Suppose we have a CNF formula of m clauses, with
m1 clauses of size 1, m2 of size 2, etc., and
m = m1 + m2 + …

Pick X1, for each of the two possible settings we
then calculate the expected number of clauses
satisfied if we were to go with that setting, and
then set the rest of the variables randomly.

false]E[X
2

1
true]E[X

2

1
E[] 11

OPT
2

1
E[]]true/falseE[X1

Deterministic SAT Approximation

If we set X1=false, we get in expectation

4
4

3
1

4

3

2

1
1

If we set X1=true, we get in expectation

4

3
31

4

3
110

So, we choose X1=false

)XX(X)XXX()XX(X)X(XX 321321321211

4

Deterministic SAT Approximation

If we set X2=false, we get in expectation

)XX(X)XXX()XX(X)X(XX 321321321211

2
2

1

2

1
1

If we set X2=true, we get in expectation

2110

So, we choose X1=false

)X(X)X(XX 32322

Deterministic SAT Approximation

Fix X1 to the setting that gives us a larger
expectation.

Now go on to X2 and do the same thing, setting it
to the value with the highest expectation, and then
X3 and so on.

Since we always pick the setting whose expectation
is larger, this expectation never decreases

false]E[X
2

1
true]E[X

2

1
E[] 11

Using LP

We can set this problem as an integer programming

We define Xk{0,1} for each variable and each

Zk {0,1} for each clause Ck.

The goal

Subject to
jj Ci

i
Ci

ij)X-(1XZ

where jC are the variables that appear in Cj
without negation.

j
jjZmmax

Relaxation

Since ILP is NP-complete, we solve a relaxation of
the problem.
We define 0 ≤ Xk≤ 1 and 0 ≤ Zk≤ 1

After solving LP we get Xk=pk and do a
probabilistic rounding of the result.

Next we use the arithmetic and geometric mean
n

i
i

i
i p

n

1
p

jj Ci
i

Ci
ij p)p(1false]Pr[C

Relaxation

j

jj

j

jj

)p)p(1(
1

p)p(1false]Pr[C
Ci

i
Ci

i

jCi
i

Ci
ij

l

l
l

lj - # of literals. We simplify this using constrains
on Zj

to get

jj Ci
i

Ci
ij)X-(1XZ

and j

j

j
j

Z
11true]Pr[C

l

l
j

j

Z
1

11

jl

l

j

j

jj
j

Z-
false]Pr[C

l

l

l

Relaxation

jZ

From here we get a β-approximation.

OPT OPT Zmtrue]Pr[CmE[] relaxed
j

jj
j

jj

0.63
e

1
-1

Theorem (1994). Randomized rounding is

a 0.63-approximation algorithm.

j
j

j Z
1

11true]Pr[C

jl

l

5

Non-linear rounding

We don’t have to take the output of the linear
program as the probabilities for Xk.

This will result in a ¾-approximation algorithm

We could use some function to generate
probabilities for Xk.

The best result is a 0.78-approximation algorithm

jj Ci
i

Ci
ij)f(X))f(X(1false]Pr[C

