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Victor Adamchik CS 15-451       Spring 2014 

Lecture 38 Apr 23, 2014 Carnegie Mellon University 

Approximation Algorithms - II 

P  NP 

Plan: 
 
 Set Cover 
 MAX-SAT 
  
 

Set Covering Problem 

Given a collection of 
subsets  

 U ={S1, …, Sm} 

 

Find a min-size subset C 
such that C covers U. 

 

Famous NP-complete 
problem 

Visualizing Set Cover 
S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6},  
S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3} 
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Visualizing Set Cover 
S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6},  
S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3} 
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a min-size cover 
consists of three 
subsets 

Greedy Algorithm 

U = C [empty cover] 

C = {} 

While there is uncovered element 

Find the subset Sk covers the most elems 

U  U - Sk 

C C  Sk 

Return C 
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How Good of an Approximation? 

We’d like to compare the number of subsets 
returned by the greedy algorithm to the optimal 

 

The optimal is unknown, however, if it consists 
of k subsets, then any part of the universe can 
be covered by k subsets! 

How Good of an Approximation? 

Theorem. If the optimal solution uses k sets, 
the greedy algorithm finds a solution with at 
most k ln n sets. 

Proof. Since the optimal solution uses k sets, 
there must some set that covers at least a 1/k 

fraction of it.  

Therefore, after the first iteration n – n/k 
elems left. 

Theorem. If the optimal solution uses k sets, 
the greedy algorithm finds a solution with at 
most k ln n sets. 

Proof. (contd)  

The algo chooses the most of the elems left 

Thus, after the second iteration there are 

 n – n/k - (n – n/k)/k  elems left 

which is (n – n/k)/k   

 Observe, n – n/k - (n – n/k)/k  = n (1-1/k)2 

Theorem. If the optimal solution uses k sets, 
the greedy algorithm finds a solution with at 
most k ln n sets. 

Proof. (contd)  

More generally, after y rounds, there are at most 

n (1-1/k) 
y 

elems left. 

Choosing y = k ln n, we get 

n (1-1/k) 
y = n (1-1/k) 

k y/k ≤ n e 
-y/k= n e 

-ln n = 1 

 

MAX-SAT 

Given a CNF formula (like in SAT), try 
to maximize the number of 

clauses satisfied. 

 

CNF  is a conjunction of clauses, where 
each clause is a disjunction of literals 
(X1  X2  …  Xk). 

 

Famous NP-complete problem. 

Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Proof. Try a random assignment to the variables.  

Since there is only one out of 8 combinations 
that can make it false, the probability of the clause 
being false is 1/8. 

Pr[clause is false] = ? 
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Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Proof. (cont) 

So if there are m clauses total, the expected 
number satisfied is (7/8) m. 

If the assignment satisfies less, just repeat. 

With high probability it won't take too many tries 
before you do at least as well as the expectation. 

Exactly-3-SAT Approximation 

With high probability it won't take too many tries 
before you do at least as well as the expectation. 

Proof. (cont) 

Let Z be the random variable denoting the number 
of clauses satisfied by a random assignment. 

Let pk = Pr[Z = k] 
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Exactly-3-SAT Approximation 

Theorem. If every clause has size exactly 3, then 
there is a simple randomized algorithm that can 
satisfy at least a 7/8 fraction of clauses.  

Theorem (Hastad, 1997).  

If there is an c-approximation with c >7/8,  

then P = NP. 

What about MAX-SAT in general? 

clauses in expectation. 

Suppose we have a CNF formula of m clauses, with 
m1 clauses of size 1, m2 of size 2, etc., and  
m = m1 + m2 + … 

Theorem. Then a random assignment satisfies 
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Deterministic SAT Approximation 

Suppose we have a CNF formula of m clauses, with 
m1 clauses of size 1, m2 of size 2, etc., and  
m = m1 + m2 + … 

Pick X1, for each of the two possible settings we 
then calculate the expected number of clauses 
satisfied if we were to go with that setting, and 
then set the rest of the variables randomly. 
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Deterministic SAT Approximation 

If we set X1=false, we get in expectation 
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If we set X1=true, we get in expectation 

4
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So, we choose X1=false 

)XX(X)XXX()XX(X)X(XX 321321321211
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Deterministic SAT Approximation 

If we set X2=false, we get in expectation 

)XX(X)XXX()XX(X)X(XX 321321321211
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If we set X2=true, we get in expectation 

2110

So, we choose X1=false 

)X(X)X(XX 32322

Deterministic SAT Approximation 

Fix X1 to the setting that gives us a larger 
expectation. 

Now go on to X2 and do the same thing, setting it 
to the value with the highest expectation, and then 
X3 and so on. 

Since we always pick the setting whose expectation 
is larger, this expectation never decreases  
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Using LP 

We can set this problem as an integer programming 

We define Xk{0,1} for each variable and each  

Zk {0,1} for each clause Ck. 

The goal 

Subject to 
jj Ci
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where  jC are the variables that appear in Cj 
without negation. 
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Relaxation 

Since ILP is NP-complete, we solve a relaxation of 
the problem.  
We define 0 ≤ Xk≤ 1 and 0 ≤ Zk≤ 1  

After solving LP we get Xk=pk and do a 
probabilistic rounding of the result. 

Next we use the arithmetic and geometric mean 
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lj  - # of literals. We simplify this using  constrains 
on Zj 

to get 
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Relaxation 
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From here we get a β-approximation. 

OPT OPT Zmtrue]Pr[CmE[] relaxed
j

jj
j

jj

0.63
e

1
-1 

Theorem (1994). Randomized rounding is  

a 0.63-approximation algorithm. 
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Non-linear rounding 

We don’t have to take the output of the linear 
program as the probabilities for Xk. 

This will result in a ¾-approximation algorithm 

We could use some function to generate 
probabilities for Xk. 

The best result is a 0.78-approximation algorithm 
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