Algorithm Design and Analysis
Victor Adamchik CS 15-451 Spring 2014
Lecture 39 Apr 25, 2014 Carnegie Mellon University

String Matching - T

J.Morris D.Knuth

Algorithms on Strings

Pattern Matching

Wild-card Matching

Compute a distance between fwo strings
Compute a longest substring

Compute a cheapest tree connecting all
given strings

Compute a shortest superstring of all
strings

Pattern Matching

Let T be a string of length N over a finite
alphabet £ and P be a string of length M
over X

In a pattern matching problem we search
for all occurrences of a pattern Pina
text T.

Brute-Force Algorithm

It runs in time O(h m)
Example of worst case:
* T=aaa ..ah
* P = aaah
* may occur in images and DNA
sequences
* unlikely in English text

Deterministic Finite Automaton

A finite automaton M is defined as a 5-tuple
M=(Z,Q q.A?)

% is the alphabet
Q is the set of states
go € Q is the start state
A c Q is the set of accept states
5:Qx X — Q is the transition function
L(M) = the language of machine M
= set of all strings machine M accepts

M= (Q 2,3, q,F)

Q ={q0, q1, 42, q3}

3 Q x Z — Q transition function
Z={01}

Qo € Q is start state

A ={ql, q2} c Q accept states

92 93 92
93 90 92

0 o 1 s | o 1

n 1 {3 n 9o 90 4

> G 92 92
N 7

start state (qo) o
0111 =

0
transitions /‘_\

accept states (F)
<
Q !

‘0/
A
S~ states

The machine accepts a string if the process
ends in an accept state (double circle)

4

The Knuth-Morris-Pratt Algorithm
(1976)

Build DFA from pattern
Run DFA on multiple texts

Build DFA from pattern

The alphabet is {a, b}.
The patternisaabaaabb.

To create a DFA we consider all prefixes
€, a, aa, aab, aaba, aabaa, aabaaa, aabaaab,
aabaaabb

These prefixes are states. The initial
state is £ (empty string). The pattern is
the accept state.

DFA Construction

0= 1 S5,

b <} b b
—»3—»4—“»5—»6—»7—».

aabaaabb

read the string
ababbbabbabaabbab
and print the sequence of states.

a
a

b
a
Chalit byio it 0, 0,9
S
b a

a-b-a-b-b-b-a-b-b-a-b-a-a-b-b-a-b
1-2-1-2-3-0-1-2-3-4-5-6-7

4

The Knuth-Morris-Pratt Algorithm
(1976)

1970 Cook published a paper about a
possibility of existence of such algorithm

Knuth and Pratt developed an algorithm

Morris discovered the same algorithm

4 Building a DFA

Q’ What is the worst-case runtime of
building a DFA?

OM3 1)

M = pattern.length();
¥ = alphabet.size();
KMP eliminates the need to compute

the entire transition function.

The KMP Algorithm - Motivation

Algorithm compares the
pattern to the text in text
left-to-right, but shifts| [[d A dd 84 [1 [
the pattern more :

pattern

intelligently than the FEEFLE

brute-force algorithm. |

When a mismatch
occurs, what is the most [dd ddHd

hift the patt
Wwe can ShiTT The pattern .\ oq4 ’ro[I \ Resume
so as to avoid redundant .,)

) peat these comparing
comparisons? comparisons here

KMP would say, "but we already had seen this"

B - [T[]

| a ‘ b ‘ b ‘ a ‘ b|b | We were comparing index 5
within T, vs index 5 within P.

“so we could have resumed like this:"

B - o] [[[[[[]

We now compare index 5
|a‘b b‘a‘b‘b within T, vs index 2
withinP.

So when a match fails, KMP tells us that

we should stay at the SAME index within T as
we were before, and we just change our index
within P (we move back within W).

we need to go back as far as possible in
order to guarantee that we don't miss anything.

[afofafbfalopl [[[[]

[aTbTaTo a0 [l
Tt would we dan&er‘ous to move back to
[afbfajbfafbl [[[][]

| a ‘ b|a ‘ b ‘ a ‘ b ‘ a | We could miss something!

So we need to Také the LONGEST suffix of P
which is a prefix of P

lalofafblafo] | [[]]|

KMP

How much can a string overlap with itself
at each position?

a|lb|al|b]|b
ojlo|1|2]0

Compute the length of the longest prefix
of P that is a proper suffix of P.

It determines where to go whenever
there is a mismatch in the next letter.

Matching

b|a|b
oj|o|1|2]0

abababbabbabababb
ababb

abababbabbabababb
ababb

KMP

a| b

o|jo0j1]2|0

abababbabbabababb
abab
Mismatch

abababbabbabababb
ababb
KMP
al| b
ojo|1]2]0
abababbabbabababb
ababb
KMP
al| b
ojo|1]2]0
ab abbabababb

ababb
ababb

The KMP Algorithm

Failure Function

n[k] = max(j < k | pattern[j] is a suffix of pattern[k])

n[k] is called a failure function, since it represents
only backward transitions, in other words, it

determines where to go whenever there is a
mismatch in the next letter.

“aabaaab”, 7 ={0,1,0,1, 2, 3}

Failure Function

int[] pi = new int[pattern.length()l;
int x=0;
for(int p = 1; p < pattern.length(); p++)
{

while(x > 0 &&

pattern.charAt(x) I= pattern.charAt(p))
x = pi[x-1];

if (pattern.charAt(x) == pattern.charAt(p)) x++;
pilp] = x:
}

Matching
x=0;
for(int k = O; k < text.length(); k++)
{
while(x>0 &&

pattern.charAt(x) |= text.charAt(k))
x = pi[x-1];

if(pattern.charAt(x) == text.charAt(k)) x++;

if(x == pattern.length()) return true;
}

The KMP Algorithm

At most 2N comparisons
in fotal

Applications
DNA matching:

DNA consists of small molecules called nucleotides.
There are four of them Adenine, Cytosine, Guanine
and Thymine. Therefore, {A, C, G, T} creates an
alphabet.

Protein matching:

Proteins are composed of amino acids. There are
basically 20 amino acids. Hence, a protein can be
represented as a string over 20 letters.

