
1

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 39 Apr 25, 2014 Carnegie Mellon University

J.Morris D.Knuth

String Matching - I

Algorithms on Strings

Pattern Matching
Wild-card Matching
Compute a distance between two strings
Compute a longest substring
Compute a cheapest tree connecting all
given strings
Compute a shortest superstring of all
strings

Pattern Matching

Let T be a string of length N over a finite
alphabet S and P be a string of length M
over S

In a pattern matching problem we search
for all occurrences of a pattern P in a
text T.

Brute-Force Algorithm

It runs in time O(n m)
Example of worst case:

• T = aaa … ah
• P = aaah
• may occur in images and DNA

sequences
• unlikely in English text

Deterministic Finite Automaton

A finite automaton M is defined as a 5-tuple
M = (Σ, Q, q0 , A,)

Σ is the alphabet
Q is the set of states
q0 Q is the start state
A Q is the set of accept states
 : Q Σ → Q is the transition function

L(M) = the language of machine M
 = set of all strings machine M accepts

Q = {q0, q1, q2, q3}
: Q Σ → Q transition function

Σ = {0,1}
q0 Q is start state
A = {q1, q2} Q accept states

M = (Q, Σ, , q0, F)

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2

0
0,1

0 0

1

1

1

q0

q1

q3

M

0

1

0

1

1

0,1

0

0

2

0
0,1

0 0

1

1

1

0111 111

11

1

The machine accepts a string if the process
ends in an accept state (double circle)

states

start state (q0)
accept states (F)

transitions

ϵ

The Knuth-Morris-Pratt Algorithm

(1976)

Build DFA from pattern

Run DFA on multiple texts

Build DFA from pattern

The alphabet is {a, b}.
The pattern is a a b a a a b b.

To create a DFA we consider all prefixes
ε, a, aa, aab, aaba, aabaa, aabaaa, aabaaab,
aabaaabb

These prefixes are states. The initial
state is ε (empty string). The pattern is
the accept state.

DFA Construction
 a a b a a a b b

0 1
 a

b

2
 a

b

3
b

 a

 a

b

a

b

 b

b

b
4 5 6 7 8

 a

a

a

Matched: a a b a a a b b

read the string

 ababbbabbabaabbab

 and print the sequence of states.

0 1
 a

b

2
 b

3
b b

b

a

a

 a

b

4 5 6 8
 a

a

 a

 a

 a-b-a-b-b-b-a-b-b-a-b-a-a-b-b-a-b

 1-2-1-2-3-0-1-2-3-4-5-6-7

The Knuth-Morris-Pratt Algorithm

(1976)

 1970 Cook published a paper about a
possibility of existence of such algorithm

 Knuth and Pratt developed an algorithm

Morris discovered the same algorithm

3

What is the worst-case runtime of
building a DFA?

O(M3 Σ)

M = pattern.length();

Σ = alphabet.size();

Building a DFA

KMP eliminates the need to compute
the entire transition function.

The KMP Algorithm - Motivation

Algorithm compares the
pattern to the text in
left-to-right, but shifts
the pattern more
intelligently than the
brute-force algorithm.

When a mismatch
occurs, what is the most
we can shift the pattern
so as to avoid redundant
comparisons?

x

j

a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

text

pattern

KMP would say, “but we already had seen this”

a b b a b

a b b a b b

“so we could have resumed like this:”

a b b a b

a b b a b b

So when a match fails, KMP tells us that
we should stay at the SAME index within T as
we were before, and we just change our index
within P (we move back within W).

We were comparing index 5
within T, vs index 5 within P.

We now compare index 5
within T, vs index 2

within P.

we need to go back as far as possible in
order to guarantee that we don’t miss anything.

a b a b a b

It would we dangerous to move back to

a b a b a b

a b a b a b a

a b a b a b a We could miss something!

So we need to take the LONGEST suffix of P
which is a prefix of P

a b a b a b

KMP

How much can a string overlap with itself
at each position?

Compute the length of the longest prefix
of P that is a proper suffix of P.

a b a b b

0 0 1 2 0

It determines where to go whenever
there is a mismatch in the next letter.

Matching

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b b

4

KMP

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b b

KMP

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b b

KMP

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b b

KMP

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b b

Mismatch

KMP

a b a b b

0 0 1 2 0

a b a b a b b a b b a b a b a b b
a b a b a b b

The KMP Algorithm

Implementation

5

Failure Function

[k] = max(j < k | pattern[j] is a suffix of pattern[k])

[k] is called a failure function, since it represents
only backward transitions, in other words, it
determines where to go whenever there is a
mismatch in the next letter.

“aabaaab”,  = {0, 1, 0, 1, 2, 3}

Failure Function
int[] pi = new int[pattern.length()];

int x = 0;

for(int p = 1; p < pattern.length(); p++)

{

 while(x > 0 &&

 pattern.charAt(x) != pattern.charAt(p))

 x = pi[x-1];

 if(pattern.charAt(x) == pattern.charAt(p)) x++;

 pi[p] = x;

}

Matching

x = 0;
for(int k = 0; k < text.length(); k++)
{
 while(x>0 &&
 pattern.charAt(x) != text.charAt(k))
 x = pi[x-1];

 if(pattern.charAt(x) == text.charAt(k)) x++;

 if(x == pattern.length()) return true;
}

Theorem:
At most 2N comparisons

in total

The KMP Algorithm

Applications

DNA matching:
DNA consists of small molecules called nucleotides.
There are four of them Adenine, Cytosine, Guanine
and Thymine. Therefore, {A, C, G, T} creates an
alphabet.

 Protein matching:
Proteins are composed of amino acids. There are
basically 20 amino acids. Hence, a protein can be
represented as a string over 20 letters.

