Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014 V n
Lecture 40 Apr 28, 2014 Carnegie Mellon University The KMP Algor‘IThm
String Matching - IT Theorem:

At most 2N comparisons
in total

Knuth

The Aho-Corasick Algorithm Patterns {he, she, his, hers}

(1986)

start e r s
—_— () e | m— 2 = je—p O
8

4

The algorithm preprocesses
the set of patterns.

The Aho-Corasick Algorithm .)
The Rabin-Karp Algorithm

We still use the longest suffix rule. If we fail on 1981

making a transition from a node N to its child, we (1981)

transition to a hode M, where the string that

defines M is the farthest node (longest prefix)

from the root which is also a suffix of the string x

we had matched when we failed (removing the first

transition). The algorithm uses the idea of
hashing
The only difference is that instead of traversing

a single string left-to-right we now have to
traverse a trie.

The main idea

pattern = 4848
text = 16180339887498948482045

We do not match a string against a given
pattern, but rather compare their hash codes.

The main idea
pattern = 4848 % 71 =20

16180339887498948482045

1618 1618 % 71 =56
6180 6180 % 71=3
1803 1803 % 71 =28

We read the text in the number of characters
equal to the length of the pattern, compute its
hash code and compare with the pattern hash
code.

ﬁ(What is its complexity?
[]
Q/ M = pattern.length()
N = text.length();

Similar to a brute-force matching...

The key idea of improving the algorithm
is in computing a hash code in O(1).

Computing a hash code

How can we get from 145 to 456?
We will do this by creating a chain of operations
145 - 45 - 450 - 456

Remove the leading digit, multiply by a base, add

a single digit. I't takes O(1) to compute a hash
code from the previous value.

Example

Given: a hash code for 31729
31729 mod 41 = 36

Task: compute a hash code for 17295.

Example

Given: a hash code for 31729
31729 mod 41 = 36
Task: compute a hash code for 17295.

Observe,
17295 = (31729 - 3+104)» 10+ 5

Example
17295%41 = [(317297.41-3+104%41) 10 + 5]
31729%41 is already computed.
3+10* % 41 will be precomputed

17295 = [(36 - 29)~10 + 5]

Rabin-Karp formalized

Let P[1... m] be a pattern and T[1 ... n]be a
text. We define a pattern
P =10m1P[1] + 10 P[m-1] + ... + P[m]

and a shift in the text:
t, = 10m1T[s+1] + 10 T[s+m-1] + ... + T[s+m]

The value t.,; can be obtained from 1, by

Yo = (TS - 10'“-1T[s+1]) 10 + T[s+m+1]

=75 =34
’l Exercise
(]
Q’ We said
"31729%41 is already computed”

How would you compute it fast?

;
L

Horner's Rule

ax*+bx3+cx2+dx+e

e+x(d+x(c+x(b+ax)

Implementation
public int search(String T, String P)
int M = P.length(), N = T.length();

intdM=1,h1=0,h2=0;
int q = 3355439; /*pick it at random */
int d = 256; /* radix */

for(int j= 1: j < M; j++) dM = (d*dM) % q:

for(int j = 0; j < M; j++)
hl = (h1*d + P.charAt(})) % q:
h2 = (h2*d + T.charA1(j)) % q;
}

Implementation (cont.)
if(hl == h2) return O;
for(inti=M;i<N;i++){
h2 = h2 - T.charAt(i - M) * dM % q;

h2 = (h2*d + T.charAt(i)) % q;
if(hl==h2) return i - M +1;

return -1;

”(False match

Q/ T==Pmodgqg

What do we do in a case of
false match?

When we found a match we can check
the match by char comparison.

TRIES = "retrieval"

. Fredkin (1960)

Main idea: based on the digits of
the keys!

TRIES

+ Each node (or edge) is labeled with a
character

« Children of node are ordered
(alphabetically)

+ Paths from root to leaves yield all input
strings

sells sea shells by the sea shore

Applications

Auto completion

Spell checkers

Data compression
Computational biology
Google's inverted tables

Node Structure

Often wasteful of space because many of the
child fields are null.

Possible node representations:
* Array

* Hash Table

* Linked List

* Binary Tree

Search

public boolean find (TrieNode node, String key)

{
if (key.length()==0) return node.isWord();

char ch = key.getChar(0);

String rest = key.substring(1);

TrieNode child = node.getChild(ch);

if(child == null) return false;

else Runtime
return find (child, rest); complexity -?

Insert

public void insert (TrieNode node, String key)
{
if (key.length()==0) node.setWord(true);
char ch = key.getChar(0);
String rest = key.substring(1);
TrieNode child = node.getChild(ch);
if (child == null) {
node.setChild(new TrieNode(ch), ch);
insert (newChild, rest);
} Runtime
else complexity -?
insert (child, rest);

Prefix Match s’rﬁrﬁng with
s

Advantages, relative to BST

Search is faster |

It does not depend on the number of elements
in the tree.

Trie helps with prefix-matching.

Advantages, relative to hashing

No collisions.
No hash function.

Alphabetical sorting. How?

Compressed Tries

+ Each non-leaf node (except root) has at
least two children

* Replace a chain of one-child nodes with a
single node labeled with a string

Compressed Tries

sells sea shells by the sea shore

Compact Tries (PATRICIA)

A more compact representation of
compressed tries

Compact Tries (PATRICIA)

A more compact representation of
compressed tries

Integer

o &dexes

