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Lecture 41 Apr 30, 2014 Carnegie Mellon University 
Purpose – pattern matching 

 

Given a very long text T, preprocess it, so that 
once a query text P is given, we can efficiently 
find if P appears in T. 

SUFFIX TREES (Weiner ,1973) 

 

Used to search the  human genome. 

Suffix Tree  
 

A suffix tree of a string s is a compressed trie 
that stores all suffixes of s.  

 
A compressed trie is a trie in which non-
branching paths are stored as single node labeled 
with a string. 

Suffix Tree (uncompressed)  
s = abba  
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suffix can be a 
prefix 

of another suffix 

It is easily overcome by 
adding a special char $ 

to the end of each 
suffix. 

Suffix Tree 

 

Draw a suffix tree for 
GOOGOL  

    

Here are all suffixes 
, L,  OL, GOL, OGOL, 

OOGOL, GOOGOL 

Suffix Tree - GOOGOL 

go 

ogol 

o 
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 gol  l 
ogol 
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Space complexity- ? 
uncompressed vs. compressed… 

l 
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Space Complexity 

go 
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G O O G O L 

(i, j) 

Uncompressed: O(s2), where s is the string length 

To reduce space we 
store just indices 

Space Complexity 
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G O O G O L 

(i, j) 

Fact: compressed tree requires a linear space 

Proof: 
1) #_leaves = #_suffixes 
2) #_internal nodes < #_suffixes 

Searching  
 

Build a suffix tree for a text. 
Traverse the tree according to the pattern.  
If we did not get stuck traversing the pattern 
then the pattern occurs in the text. 

The complexity is the pattern length. 
 

How can we count occurrences of the pattern? 

Occurrences of the pattern 

go 

ogol 

o l 

 gol  l 
ogol 

l 

TEXT:  googol 

PATTERN: go 

The algorithm returns a subtree with all 
occurrences of a pattern (just count leaves) 

Find the longest substring that 
appears more than once 

We label each node 
with its depth. 

Then we find the 
internal node with the 
largest depth.  

Longest common substring  
(of two strings)  

Example: ALOHA and HELLO 

Construct a new string a&b, 
where & is a special char. 

Construct a suffix tree for a&b. 

Each leaf repres. a suffix that 
begins in a or in b. 

Find the deepest node that 
belongs to both strings. 
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L 

ALOHA&HELLO 

O 
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ELLO 

H ELLO 

H 

A&HELLO 

H 

A&HELLO 

skip a few… 

So, we can find a longest substring in a linear time 

deepest char that 
belongs to both 
strings 

Find the Longest Palindrome  

Example: bananas 

Construct a suffix tree for a 
string Sf and its reverse Sr. 

For every suffix k in Sf, find the 
lowest common ancestor with the 

suffix n - k + 1 in  Sr. 
Here n is the length of the string. 

The path from the root to the 
LCA is a palindrome. 

Building Suffix Trees in O(n) Time 

We need some extra preprocessing: 
a) Suffix array 
b) Longest common prefix array 

Suffix array is just the lexicographically 
sorted array of all its suffixes (indexes) 

0 1 2 3 4 5 6 

B A N A N A $ 

6 $ 

5 A$ 

3 ANA$ 

1 ANANA$ 

0 BANANA$ 

4 NA$ 

2 NANA$ 

k-th suffix begins at position k. 

6,5,3,1,0,4,2 is a suffix array. 

Building Suffix Trees in O(n) Time 

For every two adjacent suffixes, we 
compute the longest common prefix 

6 5 3 1 0 4 2 

0 1 3 0 0 2 

We add suffixes into a tree in the 
order they appear in the suffix array. 

To add the next suffix into a tree we use the 
LCP values. 

Complexity of building is the same as traversing 
a tree in preorder, which is linear. 

6 $ 

5 A$ 

3 ANA$ 

1 ANANA$ 

0 BANANA$ 

4 NA$ 

2 NANA$ 

Suffix Arrays 

were introduced by Manber and Myers in 1989 
(and published in 1993). 

They take of a factor 4 less space then suffix 
trees. 

They can be used for searching. 
O(P + log T) 

How would you search for a 
pattern? 

6 $ 

5 A$ 

3 ANA$ 

1 ANANA$ 

0 BANANA$ 

4 NA$ 

2 NANA$ 

Searching Suffix Arrays 

Since suffix array is sorted we can use a binary 
search… 

Let P be a pattern, and A[k] is a 
suffix array.  Compute 

Lp=min{k | P ≤ A[k] or k = n} 
Rp=max{k | P ≥ A[k] or k = -1} 
as the left/right bounds. 
At the start, Lp=0 and Rp=n. 

Pattern matches some A[k] for k[Lp, Rp] 

6 $ 

5 A$ 

3 ANA$ 

1 ANANA$ 

0 BANANA$ 

4 NA$ 

2 NANA$ 


