
1

Suffix Trees and Arrays

Algorithm Design and Analysis

Victor Adamchik CS 15-451 Spring 2014

Lecture 41 Apr 30, 2014 Carnegie Mellon University
Purpose – pattern matching

Given a very long text T, preprocess it, so that
once a query text P is given, we can efficiently
find if P appears in T.

SUFFIX TREES (Weiner ,1973)

Used to search the human genome.

Suffix Tree

A suffix tree of a string s is a compressed trie
that stores all suffixes of s.

A compressed trie is a trie in which non-
branching paths are stored as single node labeled
with a string.

Suffix Tree (uncompressed)
s = abba

a

b

b 

 b

a

 a

b

a

suffix can be a
prefix

of another suffix

It is easily overcome by
adding a special char $

to the end of each
suffix.

Suffix Tree

Draw a suffix tree for
GOOGOL

Here are all suffixes
, L, OL, GOL, OGOL,

OOGOL, GOOGOL

Suffix Tree - GOOGOL

go

ogol

o



 gol l
ogol

l

Space complexity- ?
uncompressed vs. compressed…

l

2

Space Complexity

go

ogol

o l

 gol l
ogol

l

G O O G O L

(i, j)

Uncompressed: O(s2), where s is the string length

To reduce space we
store just indices

Space Complexity

go

ogol

o l

 gol l
ogol

l

G O O G O L

(i, j)

Fact: compressed tree requires a linear space

Proof:
1) #_leaves = #_suffixes
2) #_internal nodes < #_suffixes

Searching

Build a suffix tree for a text.
Traverse the tree according to the pattern.
If we did not get stuck traversing the pattern
then the pattern occurs in the text.

The complexity is the pattern length.

How can we count occurrences of the pattern?

Occurrences of the pattern

go

ogol

o l

 gol l
ogol

l

TEXT: googol

PATTERN: go

The algorithm returns a subtree with all
occurrences of a pattern (just count leaves)

Find the longest substring that
appears more than once

We label each node
with its depth.

Then we find the
internal node with the
largest depth.

Longest common substring
(of two strings)

Example: ALOHA and HELLO

Construct a new string a&b,
where & is a special char.

Construct a suffix tree for a&b.

Each leaf repres. a suffix that
begins in a or in b.

Find the deepest node that
belongs to both strings.

3

O

L

ALOHA&HELLO

O
L

O

E

L

L

O

&

H

ELLO

H ELLO

H

A&HELLO

H

A&HELLO

skip a few…

So, we can find a longest substring in a linear time

deepest char that
belongs to both
strings

Find the Longest Palindrome

Example: bananas

Construct a suffix tree for a
string Sf and its reverse Sr.

For every suffix k in Sf, find the
lowest common ancestor with the

suffix n - k + 1 in Sr.
Here n is the length of the string.

The path from the root to the
LCA is a palindrome.

Building Suffix Trees in O(n) Time

We need some extra preprocessing:
a) Suffix array
b) Longest common prefix array

Suffix array is just the lexicographically
sorted array of all its suffixes (indexes)

0 1 2 3 4 5 6

B A N A N A $

6 $

5 A$

3 ANA$

1 ANANA$

0 BANANA$

4 NA$

2 NANA$

k-th suffix begins at position k.

6,5,3,1,0,4,2 is a suffix array.

Building Suffix Trees in O(n) Time

For every two adjacent suffixes, we
compute the longest common prefix

6 5 3 1 0 4 2

0 1 3 0 0 2

We add suffixes into a tree in the
order they appear in the suffix array.

To add the next suffix into a tree we use the
LCP values.

Complexity of building is the same as traversing
a tree in preorder, which is linear.

6 $

5 A$

3 ANA$

1 ANANA$

0 BANANA$

4 NA$

2 NANA$

Suffix Arrays

were introduced by Manber and Myers in 1989
(and published in 1993).

They take of a factor 4 less space then suffix
trees.

They can be used for searching.
O(P + log T)

How would you search for a
pattern?

6 $

5 A$

3 ANA$

1 ANANA$

0 BANANA$

4 NA$

2 NANA$

Searching Suffix Arrays

Since suffix array is sorted we can use a binary
search…

Let P be a pattern, and A[k] is a
suffix array. Compute

Lp=min{k | P ≤ A[k] or k = n}
Rp=max{k | P ≥ A[k] or k = -1}
as the left/right bounds.
At the start, Lp=0 and Rp=n.

Pattern matches some A[k] for k[Lp, Rp]

6 $

5 A$

3 ANA$

1 ANANA$

0 BANANA$

4 NA$

2 NANA$

