
Online Algorithms
� Introduction

So far in class, we have only considered the following algorithm design: we are given an input I , are

allowed to perform some computation, and then produce an output O. For many problems, this is an

appropriate framework. However, there are also many cases in the real world in which the algorithm

does not know the entire input yet, but still has to make partial decisions about the output.

Algorithms which have to make their decisions gradually as data arrives are called online algo-

rithms. For instance, the cache should contain frequently accessed items. Unfortunately, we do not

know which items will be accessed. Other examples include: scheduling problems, traffic routing in

networks, and more.

We define the competitive ratio for online algorithms to capture how much worse the algorithm

does compared to one that knows about the future.

Definition. Let OPT be the optimum offline algorithm (knowing about the future), and ALG our

online algorithm. Let COPT and CALG denote the costs incurred by those two algorithms. The compet-

itive-ratio (CR) is defined as

CR =
CALG

COPT

ALG is c-competitive if there is a constant Α such that for any OPT and all inputs Σ

CALGHΣL £ c COPT HΣL + Α

� The Ski Rental Problem

Say you are just starting to go skiing. Can either rent skis for $50 a day or buy them for $500. What

to do, buy or rent?

Consider the worst case - you bought the skis right away, but then lost your interest

CR =
CALG

COPT

=
500

50
= 10

Another case, you decide to rent. Then you decide to go skiing again, and again, and after a while

you realize you had rather bought skis right at the start.

V. Adamchik 15-451 Algo

CR =
CALG

COPT

=
d 50

500
=

d

10

Optimal strategy is: if you know you're going to end up skiing more than 10 days, you should buy

right at the beginning. If you know you're going to go < 10 days, you should just rent. But, what if

you don't know?

In the Ski Rental Problem, we assume that we are going skiing for some number d of days total.

Each day, we can either rent skis for R dollars, or buy them for B > R dollars. Once we have bought

the skis, we can use them for free forever afterwards.

Our deterministic algorithm can be described as “rent for d days, then buy”. Executing this algo-

rithm gives us a cost of B + d R. Next, we compute the cost of the optimum algorithm, which is
minHB, Hd + 1L RL

CR =
d R + B

MINHB, Hd + 1L RL = MAX 1 +
d R

B
, 1 +

B - R

Hd + 1L R

CR = 1 + MAX
d R

B
,

B - R

Hd + 1L R

The first term in the maximum is monotone increasing in d, and the second monotone decreasing in

d. Hence, the best ratio is achieved for the d for which the two terms are equal.

d R

B
=

B - R

Hd + 1L R

d Hd + 1L = -
B

R
1 -

B

R

Solving for d, yields

d + 1 =
B

R

This suggests that the optimum online algorithm is to buy on day number B � R. Substituting the

value of d back, we obtain

CR = 1 +
d R

B
= 1 +

R

B

B

R
- 1 = 2 -

R

B

Claim: this strategy has the best possible competitive ratio for deterministic algorithms.

For the above example (rent for 9 days, then buy)

V. Adamchik 2

CR = 2 -
R

B
= 2 -

50

500
= 1.9

What is we rented for 8 days, and then buy?

CR =
CALG

COPT

=
8 ´ 50 + 500

9 ´ 50
= 2

What is we rented for 10 days, and then buy?

CR =
CALG

COPT

=
10 ´ 50 + 500

500
= 2

Proof.

Case 1: COPT = B i.e B £ Hd + 1L R or B - R £ d R

CR =
B + d R

MINHB, Hd + 1L RL =
B + d R

B
³

B + B - R

B
= 2 -

R

B

Case 2: COPT = Hd + 1L R i.e B ³ Hd + 1L R or 1Hd+1L R
³ 1

B

CR =
B + d R

Hd + 1L R
=

Hd + 1L R - R + B

Hd + 1L R
= 1 +

B - R

Hd + 1L R
³ 1 +

B - R

B
= 2 -

R

B

� The List Update Problem

Among the first papers to study online algorithms was one by Sleator and Tarjan, studying algo-

rithms for online list accessing and paging.

Here, we focus on accessing the elements of a linked list of the size n. Specifically, if the k-th

element of the list is accessed, then the cost incurred for this access is k. Immediately after the

access, we can move that item to any position closer to the front of the list at no extra cost. This is

called a free exchange. The algorithm can also exchange any two consecutive items at a cost of 1.

These are called paid exchanges.

The goal is to devise and analyze an on-line algorithm for doing accesses with a small competitive

factor.

Clearly, frequently accessed elements should be toward the front of the list. The problem, of course,

is that we do not know which items will be requested in the future. In the absence of this knowl-

edge, one could think of several natural online heuristics.

Transposition (TRANS): Always move the most recently accessed element one position for-

ward, by swapping it with its neighbor.

V. Adamchik 15-451 Algo

Transposition (TRANS): Always move the most recently accessed element one position for-

ward, by swapping it with its neighbor.

Frequency Count(FC): Maintain a frequence of access for each item. Keep the list sorted by

deacreasing fequency.

Move To Front (MTF): Always move the most recently accessed element to the front of the list.

To analyze the above heuristics, consider the following model: the request sequence is ΣH1L, ΣH2L,
... . The values ΣHiL and the sequence length t are unknown. If ΣHiL is in position k, then the access

cost is k. Afterwards, the element can be moved forward (closer to the front) for free.

Transposition (TRANS).

We could have a sequence that always accesses the last element in the list:

ΣHxL, ΣHyL, ... ΣHxL, ΣHyL, altogether t-pairs. This results in repeated swaps between the last two

elements.

CALG = t n

The optimum solution could move the last two elements to front on the first call

COPT = 2 n + 2 t

The competitive ratio

CR =
CALG

COPT

=
t n

2 n + 2 t
= WHnL as t ® ¥

Frequency Count(FC). We could construct a sequence in the following way: access the first element

k > n times, the second - Hk - 1L times, and finally the last element - Hk - n + 1L times. Observe, the

FC heuristic will never reorganize the list. The cost is given by

CALG = k + 2 Hk - 1L + 3 Hk - 2L + ... + nHk - n + 1L ³ Hk - nL H1 + 2 + ... + nL = WIk n2M
The optimum solution would move each element to the front when it is accessed for the first time

COPT = k + @2 + Hk - 2LD + @3 + Hk - 3LD + ... = k n

CR =
CALG

COPT

=
k n2

k n
= n

Theorem. MTF is a 2-competitive algorithm

V. Adamchik 4

Theorem. MTF is a 2-competitive algorithm

CMTF £ 2 COPT

Proof.

We observe that if the lists of OPT and MTF are identical, then accesses to any element cost exactly

the same. Thus, good moves by MTF are ones that make the lists more similar. An element in OPT

has a cheap access, if the element is close to the front. Thus, moving the element to the front will

make the lists much more similar in this case.

The amortized cost AC is the actual cost ck plus a change in the potential DF HskL
AC = ck + DF HskL = ck + F HskL - F Hsk-1L

We will measure similarity of the lists with a potential function

FHkL = the number of inversions between OPT and MFT after accessing k item

An inversion is a pair of distinct elements that appear in one order in one list and in a different order

in the other list. Example,

a, c, d, e

c, e, a, d

the number of inversions is 3. Observe that in the worst case the number of inversions between two

arbitrary given lists is
n
2

. The following picture shows list configurations at access i, which is an

item x:

Consider all elements before x in MTF and find them in OPT. Let

 S = 8y | y is before x in MTF and y is before x in OPT} - shown as solid circles.

 T = 8z | z is before x in MTF and z is after x in B} - shown as crosses.

Then we have

V. Adamchik 15-451 Algo

Then we have

CMTFHiL = S + T + 1

Next, find a change in potential FHiL - FHi - 1L. Moving x to front will eliminate T inversions

(crosses) and create new S inversion (solid circles). Thus,

FHiL - FHi - 1L = S - T

But this is not all - OPT is also allowed to rearrange its list. Since OPT performs only paid

exchanges, each paid exchange creates one inversion. Let P denote the number of paid exchanges

performed by OPT, hence

FHiL - FHi - 1L = S - T + P

Moreover,

COPTHiL = j + P ³ S + 1 + P

where j is a positon of x at access i. Putting it all together we get

AC = CMTFHiL + FHiL - FHi - 1L = S + T + 1 + HS - T + PL = 2 S + 1 + P £ 2 COPTHiL - 1

Finally, we add up over all requests

â
i=1

n

CMTFHiL + FHiL - FHi - 1L £ â
i=1

n

2 COPTHiL - 1

CMTF + â
i=1

n

FHiL - FHi - 1L £ 2 COPT - â
i=1

n

1

CMTF - FH0L + FHn - 1L £ 2 COPT - n

CMTF + FHn - 1L £ 2 COPT - n

CMTF £ 2 COPT - n - FHn - 1L £ 2 COPT

� The Cat && Mouse Game

There is one cat and one mouse which has n hiding places. A cat has a sequence of probes for find-

ing a mouse. At each time step, the cat comes to one of the places. If it's the one a mouse is hiding

in, the mouse has to move. The cost is the number of times the mouse has moved. Find a good

randomized strategy for the mouse.

Example, n = 4, the mouse is in 1 and cat's sequence is 82, 1, 3, 4, 2, 1, 3<.
Note: for any deterministic algorithm for the mouse, there exists a sequence for the cat that causes

the mouse to move every time. What's the simplest randomized algorithm for this problem?

V. Adamchik 6

Note: for any deterministic algorithm for the mouse, there exists a sequence for the cat that causes

the mouse to move every time. What's the simplest randomized algorithm for this problem?

Definition. The online algorithm ALG is c-competitive if there is a constant Α such that for all

inputs Σ

E@CALGHΣLD £ c COPT HΣL + Α

RAND: Mouse starts in a random place. Each time the mouse is hit by the cat, the mouse

moves to a random other place.

What is a strategy for the cat? The cat visits places 1, 2, ..., n - 1 repeatedly. We should have

moved to point n at the start for a cost of 1. But, we expect to move an expected n - 1 times.

Here's why. Consider two cases. Case 1 - the mouse is at n, Case 2 - it's not at n. The probabil-

ity that we're on n at the start is 1 � n and our cost is 0 in this case. The probability that we're not

at n is 1 - 1 � n. In this case what's the expected number of times we get hit before we land on

n? Hn - 1L - it's like flipping a coin of bias 1 � Hn - 1L until it gets a head.

An optimal mouse will initially choose to hide in spot n, thus COPT = 1.

So the RAND algorithm is WHn) competitive, which is not what we're looking for.

Claim. No algorithm can get oHlog nL ratio.

Proof. What if a cat probes randomly. Then, no matter what a mouse does, it has 1 � n probability of

being forced to move. So, in t time steps, expected cost to move is t � n. But, what is t? how long

does it take a cat to hit every place? This is the coupon collector's problem.

Let pi be the probability of seeing a new place after seeing i places

pi =
n - i

n

Let Xi be a random variable representing the number of probes to see a new place after seeing i

places

E@X D = E@X0D + ... + E@Xn-1D = Hby the mean time of failureL 1

p0

+
1

p1

+ ... +
1

pn-1

E@X D =
n

n
+

n

n - 1
+ ... +

n

1
= n

1

n
+

1

n - 1
+ ... + 1 = QHn log nL

Thus every online mouse will move at least

V. Adamchik 15-451 Algo

t

n
=

n log n

n
= log n

times for a single move of OPT.

Marking. A better online algorithm.

1. The mouse starts in a random hiding place

2. If the cat looks in a place, mark that place

3. If the cat looks in the mouse's place, the mouse moves to a random unmarked place

4. When all places are marked, unmark them and restart

Claim. Marking is OHlog nL- competitive. For all cat probe sequences Σ

E@CALGHΣLD £ OHlog nL COPT HΣL
Proof. We divide the analysis into phases. The last probe of a phase is the one that causes all of the

marks to be cleared. Note that the set of probes in a phase must hit every spot.

There are two types of probes

 - probing a marked place (do not count this, since a cat knows our strategy)

 - probing a unmarked place

At the first probe, the cat find the mouse with 1 � n probability. At the second probe, the cat find the

mouse with 1 � Hn - 1L probability. And so on. So, the total expected number of moves per phase is

E@X D =
1

n
+

1

n - 1
+ ... + 1 = Hn = OHlog nL

An optimal mouse will hide in the last spot probed in the cat’s sequence, and thus the expected cost

to OPT is 1.

V. Adamchik 8

