
15-456/852 Computational Geometry, Fall 2017
Homework 1 (100 pts) Due: Oct 6 by class time

Gary Miller TA: Timothy Chu

Run LATEX again to produce the table

1.(20) Projections of 3D Polygons into Two Dimensions

Define the projection of a set S of points into xy plane, as the projection of each point
into the xy plane. In particular, we can now talk about the projection of polytopes.

This problem can be thought of as the following: we have a polytope defined as the
intersection of a bunch of half-spaces in 3D. It has a well defined projection onto the xy
plane. This problem concerns finding what that projection is. The things we’d like to
understand are: is the projection a polytope, and can we find a set of linear constraints
for it?

1. Projecting 3D Polygons to 3D

(a) (Writing polytopes in a way that makes projections easier) Show that you can
write such a polytope in the form:

A+[x, y, z] ≤ b+

A−[x, y, z] ≤ b−

A0[x, y, z] ≤ b0

where the constraints A+ all have a z coefficient of 1, the constraints A− all
have a z coefficient of −1, and the constraints A0 all have a z coefficient of 0.

(b) Consider the set of constraints defined by A′[x, y] ≤ b′, where A′ consists of all
constraints generated by taking a constraint from A+ and taking a constraint
from A−, and adding them. Then throw in all constraints in A0. Show that it
takes quadratic time in n to generate A′.

(c) Is A′ always the projection of P onto the xy plane, for all A and b? Why or why
not? If not, can you tweak this algorithm so that it generates the projection of
P onto the xy plane in quadratic time? Is the projection always a polytope?
(You can try playing around with this for some example polytopes).

2. Assume you have access to an oracle that solves 2-dimensional linear programs in
linear time in the number of constraints. Use part (a) to find an expected quadratic
time algorithm to solve a 3-dimensional linear program. Do not use the 3D linear-
time algorithm mentioned in class. Your algorithm should use only linear space.

3. * Use the ideas of projecting the feasible polytope to prove LP Duality. In par-
ticular, LP duality can be seen as projecting a polytope down to a 1-dimensional
space containing c (for linear program {max cTx|Ax ≤ b}). Projecting a polytope
to 1-dimensional space can be done by projecting it successively into spaces of lower
and lower dimension.

2.(25) Simple Paths and Convex Hull

Suppose that P = {p1, . . . , pn} is a set of points in the plane. We say the the sequences
of distinct points Path = (p1, . . . , pk) is a simple path if the line segments li = [pipi+1]
are disjoint except for li ∩ li+1 = pi+1. We may also allow p1 = pk and in this case
lk−1 ∩ l1 = pk.

In the following questions we shall investigate the relation between finding a simple path
of a set of points and finding their convex hull.

1. Design an algorithm for finding a simple path through all points in P . Make your
algorithm as time efficient as possible.

2. In class we showed that computing the convex hull of n points in a comparison
based model requires Ω(n log n) time. Show that given a simple path for these
points one can find the convex hull in O(n) time.

HINT:

The idea is to run a variant of incremental convex hull where we add the points
in the order they appear on the path. Suppose we are give a simple path Path =
(p1, . . . , pn) on n distinct points and for simplicity no three are collinear. We start
by constructing the triangle from the first three points and storing it as a doubly
linked list of edges and recording which vertex is connected to the remain points
on the path.

Let I = {i | pi ∈ CH(p1, . . . , pi)} We will for each i ∈ I incrementally compute the
convex hull of (p1, . . . , pi). Make sure your algorithm handles the case when the
point pi+1 is interior to CH(p1, . . . , pi).

Use amortized analysis to show that your algorithm runs in O(n) time.

3. Show that in general any comparison based algorithm that finds a simple path of
the points in P requires Ω(n log n) comparisons.

3.(25) Star Shaped Polygon

A polygon P is star shaped if there exists a point in the interior of P that can see all
of the interior.

1. Give an O(n) expected time algorithm to determine if a simple polygon of size n is
star shaped.

2. Give a O(log n) time algorithm for determining if a point q is in a star shaped
polygon P . We assume that the the vertices of P are given in CW order and that
we are also given a point p that can see all of the interior P .

Page 2

4.(25) Circular Partition

Given a set of red points R and a set of green point G in the plane give an algorithm to
find a disk D such that G ⊂ D and R ∩D = ∅ if one exists. Your algorithm should run
in expected linear time in the size of R and G.

5.(20) Broken Simple Path and Convex Hull Algorithm

Suppose P = {p1, ..., pn} is a set of points in the plane. We say that sequences of distinct
points {p1, ..., pn} form a simple path if the line segments li = [pi, pi + 1] are disjoint
except for li ∩ li+1. Furthermore we allow p1 = pn and ln−1 ∪ l1 = p1.

Given a simple path, P , consider the following algorithm to compute CH(P). Let S be
a stack, initialized with s0, s1 where s0 is the leftmost point of P and s1 is the clockwise
successor in P .

1. While the top of the stack is not s0, take the next point in P , some pi along with
the top two points in the stack, st−1, st.

2. If st−1stpi form a right turn, add pi to the stack and continue.

3. While st−1stpi form a left turn, pop the stack. Then add pi.

Clearly, this algorithm terminates. What’s more, it runs in O(|P |)! However, there’s
a bug in this algorithm - find a counter-example for which this algorithm fails to find
the convex hull of P . Try to give a general description for the types of polygons this
algorithm fails on.

6.(30) * Output Sensitive Convex Hull

In class we analyzed two convex hull algorithms - merge hull and a randomized incre-
mental algorithm, both of which ran in O(n log(n)). We will now describe and analyze
an output sensitive convex hull algorithm. If the number of vertices determining the
boundary of CH(P) is h, we want an algorithm that runs in O(n log(h)).

• Let p ∈ R2 and let P be a convex polygon in R2 on m vertices. Define a tangent
from p to P as a directed line l between p to q ∈ P such that all x ∈ P lie to the left
of l. Prove that l is uniquely defined, and give an algorithm to find l in O(log(m))
time. State any assumptions on how P is stored.

Suppose a ‘little birdie’ tells us h for a point set S, |S| = n. Consider the following
divide and conquer convex hull algorithm. Our algorithm will divide S into n/h sets,
each of size h and compute the convex hull of the smaller sets, and finally merge the
results.

• Suppose pl is the leftmost point of S. Assuming the sub-hulls for each of our n/h
pieces of size h have been computed, show how to find the next edge of the convex
hull of S in O((n/h) log h) time. [Hint: think of a very simple search algorithm].

• What is the overall complexity of computing the convex hull of S by repeated
application of the previous find-edge procedure? Be sure to explain your result.

Page 3

Unfortunately we’re basing all of our analysis on this ‘little birdie’ who so kindly told
us the value of h. We will now see how to remove this dependence, and still meet the
same bounds.

Suppose we start with h′, an initial guess of h where h′ < h. Upon running the divide
and conquer algorithm described above with h′ we will quickly see in the reconstruction
step that we need more than h′ edges in order to construct the global hull. Instead of
running the reconstruction procedure for all h steps, let’s terminate the algorithm once
we observe that the global hull requires more than h′ edges.

• Suppose that initially, h′ = 3, and that each time we notice that h′ is incorrect, we
square h′ and restart the algorithm. Clearly this new algorithm terminates, as in
the final iteration, h′ < h2, and we shall fully reconstruct the global hull. Prove the
running time of this procedure is O(n log(h)).

Page 4

