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1 Geometric Medians

This begins our third unit of the course. We have moved past Sorting and
Planar Graphs and are now on to selection. The classic selection problem is
the Median problem. Given a set of n numbers, find the one in the middle.
Like many of the problems in this course, we are interested in interpreting this
problem for geometric point sets rather than just points on the real line.

Recall that a closed halfspace is a set {x € R? : a2 < b,a € R%, b € R}. In
1D, this is just all the points to one side of (and inlcuding) a point b/a on the
real line.

Definition 1.1. The Tukey depth of a point x with respect to a set P is the
minimum number of points of P in any halfspace containing x.

Tukey depth is also known as halfspace depth or location depth. We will just
use the term depth rather than Tukey depth for brevity.

In R, the median is a point of depth n/2. In this case, depth is just the
order or rank of the point from the beginning or end of the list. The reason, we
rephrase rank in terms of depth is that it allows us to take our definition with
us when we go up in dimension.

It is important to note here that the point x need not be an element of P.
We can measure the depth of any point in the space with respect to P.

A natural notion of a median in higher dimensions is just to pick a point of
maximum depth. It is not hard to see that we will not be able to get points
of depth n/2 in R2. Consider just three points in convex position. Every point
in the plane is contained in a halfspace that contains at most one point of P.
Thus, the maximum depth of all points in the plane is only n/3.

The main theorem for today will imply that this is the worst case. That is,
for every input set P C R?, there is a point (not necessarily in P) of depth at
least n/3. More generally, we will show that for P C RY, there is a point of

depth at least 7.

Definition 1.2. A point x is a centerpoint with respect to a set P C R® if the

depth of p is at least 7.

So, another way to state the main theorem for today is: Centerpoints
always exist!



2 Classic Convexity Theorems

Theorem 2.1 (Radon’s Theorem). Given n > d+2 points P C RY, there exists
a partition (Uy,U_) of P such that CC(Uy)NCC(U-) # 0.

Proof. Since n > d + 2, the points p; € P are affinely dependent. This means
there exist coefficients oy, ..., a, such that
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Theorem 2.2 (Helly’s Theorem). Given a collection of convex sets S, ..., S, C
R?. If every d+1 of these sets have a common intersection, then the whole col-
lection has a common intersection.

Proof. We will prove the Theorem only for the special case of n = d + 2 and
provide only a sketch for how to extend the proof to higher numbers of sets.

Choose z; € ﬂ#i S; for ¢ =1...d + 2. The hypothesis of the theorem en-
sures that such points exist. Let (U, U-) be a Radon partition of {x1, ..., 2442}
and let p be the corresponding Radon point. We will show that p € ﬂfif X;.
It will suffice to show p € X, for an arbitrary X;. Without loss of generality,
say z; € U;. Because of the way we chose the other z;’s we know that z; € X;
for all j # 4. In particular, every z; € U_ is in X; and thus U_ C X;. Since
X; is convex, U_ C X; implies that CC(U_) C X;. Since p is a Radon point,
pE CO(Uf) C X;.

When n > d + 2, we can simply use induction on n and replace a pair of
sets X,,—1, X, with their intersection. You are encouraged to try to figure the
details for yourself. O

3 The Centerpoint Theorem

We are now ready to put these together to prove the centerpoint theorem. First,
we give a more formal statement of the result.

Theorem 3.1 (The Centerpoint Theorem). Let P be a set of n points in R?.
There exists a point ¢ € R? such that every closed halfspace containing c contains
at least 5 points of P.
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Proof. Say that an open halfspace is heavy if it contains more than
of P. Say that a closed halfspace is light if it contains fewer than
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of P. Clearly, the complement of a heavy halfspace is light and vice versa. A
point lies in a light halfspace if and only if it has depth less than z35. This
follows directly from the definition of depth. Thus a point ¢ is a centerpoint if
and only if it is contained in every heavy halfspace.

It will suffice to prove that the intersection of all heavy halfspaces is nonempty.
We need to be a little careful here an observe that we don’t really have to con-
sider all heavy halfspaces. We can instead focus on only a finite set of them.
This is important so that we can apply Helly’s Theorem in the form stated
above. There are several ways to reduce the number of halfspaces to consider
only a finite set of heavy convex sets. You are invited to think about how to do
this. For now, we’ll just assume it.

Let Hy,...,Hgy1 be heavy halfspaces. Each heavy halfspace omits fewer
than 777 points of P. So, by the pigeonhole principle, there must be some
point p € P that is not omitted by any H;. Thus p € ()i = 191 H; and so we
have shown that every set of d 4+ 1 heavy halfspaces has a common intersection.
We can therefore apply Helly’s Theorem to the finite collection of heavy spaces

to complete the proof.
O

An Algorithm? An important thing to gather about this proof is that it
implies an algorithm. The desired point is one guaranteed by Helly’s Theorem,
which in turn is constructed by Radon points. The proof of Radon’s theorem
also implied an algorithm. Recall that all we did, was to compute an affine
dependence and then partition by the sign of the coefficients. Computing the
affine dependence is just solving a linear system, which can be done in time
polynomial in d. Unfortunately, the algorithm as a whole is not efficient. This
is because there could be many heavy halfspaces that we need to consider. We
will talk about some more efficient algorithms for computing centerpoints soon.

The shape of centerpoints Another critical observation about the preceding
proof is that the set of all centerpoints is the intersection of a finite set of
halfspaces. This implies that the set of centerpoints is convex, and moreover, it
forms a polytope.



