Computational Geometry: Lecture 7

Don Sheehy
February 16, 2010

1 A worst case example for the flip algorithm

At a first look, it might seem like there is a lot of slack in our O(n?) timing
analysis. Can it really be the case that in the course of the algorithm, all (or at
least a constant fraction) of the edges get flipped? In fact, this can happen.

Consider two lines of /2 points stacked on top of one another. Call the top
points p1, ..., p, 2 and call the bottom points gz, ..., ¢, /2, numbered from left
o right on both cases. For any given triangulation T assign a potential

n/2
®(T) = ;;}ggi i = jl-

It is not hard to see that for the Delaunay triangulation, ®(Del(P)) = 0.

Let Tyqq be the triangulation formed by adding edges from p; to every ¢;
and from g, /5 to every p;. Now, we have that ®(Tpaq) = Z?:/fz —1=0(n?).

Now, we observe that a flip can only change the potential by 1. It follows
that ©(n?) flips are required to flip 7' to Delaunay. Thus the analysis of the
FLIPTODELAUNAY algorithm is tight.

2 Flips as projections

Last time, we discussed a nice intuition for what it means to do a flip. We said
that if we lift 4 points into R3, that the two triangulations correspond to the
upper and lower convex hulls of the tetrahedron formed by the lifted points.

But what if the points are not in convex position? In this case, switch-
ing between the upper and lower convex hulls eliminates the inner vertex. We
will still call this a valid flip. To tighten up our terminology, we will call the
flips that swap two triangles for two new ones, 2-2 flips or edge flips. If a flip
swaps one triangle for three, it is a 1-3 flip, and if it does the opposite, it is a

3-1 flip.



3 Incremental Delaunay Triangulation

This new kind of flip allows us to change the number of points in a triangulation.
So, let’s use it to build the Delaunay triangulation one point at a time.

Simplifying Assumption (for now). To simplify things, let’s assume that
the convex hull of our input set is a triangle and that we know what it is from
the start. We’ll get rid of this assumption before we’re done, but for now, it’ll
save us some hassle.

Algorithm 1 INCREMENTALDELAUNAY

Input: P C R? with Convex Hull vertices p1, pa, p3
Start with a triangle pi, p2, p3
for : =4 ton do
Find the triangle ¢ containing p;
Use a 1 — 3 flip to insert p; into ¢
while some edge e is not locally Delaunay do
Frip(e)
end while
end for

Notice that the inner loop is simply the FLIPTODELAUNAY algorithm we
saw before. The algorithm works by finding the triangle containing the next
point, splitting that triangle into 3, and then flipping to Delaunay.

Analysis Let’s make a couple observations about the flips that happen in the
inner loop when inserting p;.

1. All new triangles have a vertex at p;.

2. Every flip adds one edge incident to p;.

3. No flip removes an edge incident to p;.

4. The number of edge flips performed is equal to the degree of p; minus 3.

The first observation follows from the fact that any triangle that is Delaunay
after inserting p; but does not have a vertex at p;, must have been Delaunay
before adding p; and thus is not new. The second and third observations fol-
low because the only edges that are not locally Delaunayare those that are
encroached by p;. The fourth observation follows from the previous two and
gives us a way to bound the work needed to flip to Delaunay in this case.

Recall that in our previous analysis, we saw that O(n?) flips might be needed
to get a triangulation to Delaunay. In this case, we are better shape because
the number of flips is at most the degree of the new point after the flipping is
done. This means that fewer than ¢ flips are needed to insert p;. Thus, the total
number of flips is Y"1, i = O(n?).



We still have an O(n?) algorithm and, in fact, the performance could be this
bad. To find a hard example, we can use the same input that gave us trouble for
FLIPTODELAUNAY and insert the points from left to right, one line at a time.

4 Interlude: Dealing with the big triangle prob-
lem

Before we add a trick to make our incremental algorithm runin O(nlogn) time,
let’s deal with that nagging assumption.

One thing we might try is to add a big triangle around the input, use that
as the starting triangle, and then throw out the triangles that use these three
vertices when we report the final answer. This doesn’t really work, because
although it is easy to make sure that all of the input lies inside the triangle,
it is not easy to make sure that the triangulation you get when you throw
out the “outer” triangles is the Delaunay triangulation. The reason is because
the Delaunay triangles on the boundary of Del(P) could have arbitrarily large
circumballs. Thus, there is no “big enough” for the initial triangle.

It is probably possible to hack this bounding triangle idea, perhaps by re-
versing the algorithm and flipping out those vertices, but we can do something
smarter. Let’s just imagine instead that we made the bounding triangle in-
finitely large. Then, we just have to make sure our predicates don’t choke on
points at infinity. This is a simple trick that is used all the time.

5 Enter Randomness

Now that the boundary issue is taken care of, let’s speed up this algorithms by
flipping coins. We'll run the algorithms exactly as before except that this time,
we’re going to shuffle the order of the inputs. We can now redo our analysis to
find the expected runtime.

Recall that in our analysis of the deterministic algorithm, the cost of each
insertion was bounded by the degree of that vertex after inserting it. Using our
trusty backwards analysis, let’s try to figure out the expected cost of inserting
point p;. We do this by assuming that we have inserted ¢ points. Walking back-
wards one step would correspond to removing the ith point added. However,
each of the points is equally likely to be p;. Thus, the expected number of flips
is the expected degree of a vertex in the triangulation.

Recall that Euler’s formula implies that the number of edges in a planar
graph with i vertices is fewer than 3i. Thus the sum of the degrees is less than
6i. So,

1 .
Eldeg(pi)] = - sumj_, deg(p;) < 6.
So the expected number of flips for each insertion is only a constant, thus

the expected work to update the triangulation is linear.
Linear is pretty good, right? So what was all this nonsense about O(nlogn)?



We haven’t addressed an important point, that is, how do we find the triangle
containing p;. This phase of the algorithm is called point location and it’s the
source of the extra logn factor in the runtime.

6 The History DAG for point location in an in-
cremental construction

The data structure we will be using to do our point location is called the History
DAG (that’s DAG as in Directed Acyclic Graph). We can think of the History
DAG as a set of triangulations layered on top of each other. The ith triangula-
tion is the Delaunay triangulation after ¢ points have been added. There is an
edge from a triangle in level i to a triangle in level i 4 1 if they overlap. If the
same triangle appears in multiple consecutive triangulations, then only a single
edge is necessary.

To do a search for a point ¢ in the history DAG, you start by finding the
triangle containing ¢ in the initial triangulation (the one with just three points).
Then, you check search through the DAG, choosing the triangle containing ¢
among the outgoing edges from the current triangle.

Next time, we will talk about how to analyze this thing.



