
Visualization
and

Nonphotorealistic
Rendering

Adrien Treuille
Carnegie Mellon Universtiy

Project 4 Competition
Top 4 Artifacts get an IPod Touch!

(decided by vote of TAs + Graphics Lab)
Artifact can be movie/image/anything else...

Thank you AMD...

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Visualization

• Goal: Use computer
graphics to
understand data.

• For virtual every data
type there is a
corresponding
visualization.
• The importance of

graphics!
http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

Numerical Data

http://www.manifold.net/news/fly_through.jpg

Graphs

http://www.wandora.org/wandora/wiki/images/Tree_graph_example.gif

Graphs

http://www.designinginteractions.com/chapters/7

Geographic Data

http://flowingdata.com/wp-content/plugins/yet-another-photoblog/cache/g_econ.6zhzwniskpgcwwgs00okoco4s.7dm680981og04ocskgcsckco4.th.jpeg

Flow Visualization

http://www.faculty.iu-bremen.de/llinsen/publications/ParkYuHotzKreylosLinsenHamann06.jpg

3D Volume Data

http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

Example

Volume Rendering
• Visualize Large dataset for scientific /

medical application.

• Generally do not start with a 3D model.

Scientific VisualizationScientific Visualization

• Visualize large datasets in scientific and medical applications

• Generally do not start with a 3D model

CT Scan - whiter means higher radiodensity

CT Scan - White means higher radiodensity.

O
U

TP
U

T
IN

PU
T

Data Format

• A cube of density values.

Large Datasets
Scientific VisualizationScientific Visualization

• Visualize large datasets in scientific and medical applications

• Generally do not start with a 3D model

CT Scan - whiter means higher radiodensity

CT Scan - White means higher radiodensity.

O
U

TP
U

T
IN

PU
T

•CT or MRI:

•e.g. 512×512×200 ≈ 50MB

•Visible Human:

•512×512×1734 ≈ 433MB

Two Options

•Surface Rendering

•Volume Rendering

Two Options

•Surface Rendering

•Volume Rendering

Surface Rendering

• Threshold volume data.

Marching Cube TessellationsMarching Cube Tessellations

• Generalize marching squares, just more cases

• Interpolate as in 2D

• Ambiguities similar to 2D

• Then run our favorite algorithm....

• Hint: rhymes with “starching dudes”

Two Options

•Surface Rendering

•Volume Rendering

Two Options

•Surface Rendering

•Volume Rendering

Volume Rendering

• Some data better visualized as a
volume, not a surface.

• Idea: Use voxels and transparency.

Raytraced
Isosurface

Volume
Rendering

Volume Rendering PipelineVolume Rendering Pipeline

Data sets

Rendering

Sample Volume

Transfer function

Image

• Data volumes come in all types: tissue density (CT), wind
speed, pressure, temperature, value of implicit function.

• Data volumes are used as input to a transfer function, which

produces a sample volume of colors and opacities as output.

– Typical might be a 256x256x64 CT scan

• That volume is rendered to produce a final image.

Transfer FunctionsTransfer Functions

• Transform scalar data values to RGBA values

• Apply to every voxel in volume

• Highly application dependent

• Start from data histogram

Transfer Function ExampleTransfer Function Example

Mantle Convection

Scientific Computing and Imaging (SCI)

University of Utah

Three Options

•Ray Casting

•Splatting

•3D Textures

Volume Ray CastingVolume Ray Casting

• Ray Casting

– Integrate color and opacity along the ray

– Simplest scheme just takes equal steps along ray,

sampling opacity and color

– Grids make it easy to find the next cell
SplattingSplatting

• Alternative to ray tracing

• Assign shape to each voxel (e.g., sphere or Gaussian)

• Project onto image plane (splat)

• Draw voxels back-to-front

• Composite (a-blend)

3D Textures3D Textures

• Alternative to ray tracing, splatting

• Build a 3D texture (including opacity)

• Draw a stack of polygons, back-to-front

• Efficient if supported in graphics hardware

• Few polygons, much texture memory

3D RGBA texture

Draw back to front

Viewpoint

Three Options

•Ray Casting

•Splatting

•3D Textures

Volume Ray CastingVolume Ray Casting

• Ray Casting

– Integrate color and opacity along the ray

– Simplest scheme just takes equal steps along ray,

sampling opacity and color

– Grids make it easy to find the next cell

Draw back to front

Volume Ray CastingVolume Ray Casting

• Ray Casting

– Integrate color and opacity along the ray

– Simplest scheme just takes equal steps along ray,

sampling opacity and color

– Grids make it easy to find the next cell

Trilinear InterpolationTrilinear Interpolation

• Interpolate to compute RGBA away from grid

• Nearest neighbor yields blocky images

• Use trilinear interpolation

• 3D generalization of bilinear interpolation

Nearest

neighbor

Trilinear

interpolation

Trilinear InterpolationTrilinear Interpolation

Bilinear interpolation

Trilinear interpolation

Three Options

•Ray Casting

•Splatting

•3D Textures

Volume Ray CastingVolume Ray Casting

• Ray Casting

– Integrate color and opacity along the ray

– Simplest scheme just takes equal steps along ray,

sampling opacity and color

– Grids make it easy to find the next cell

Draw back to front

Three Options

•Ray Casting

•Splatting

•3D Textures

SplattingSplatting

• Alternative to ray tracing

• Assign shape to each voxel (e.g., sphere or Gaussian)

• Project onto image plane (splat)

• Draw voxels back-to-front

• Composite (a-blend)

Draw back to front

SplattingSplatting

• Alternative to ray tracing

• Assign shape to each voxel (e.g., sphere or Gaussian)

• Project onto image plane (splat)

• Draw voxels back-to-front

• Composite (a-blend)

Example

Three Options

•Ray Casting

•Splatting

•3D Textures

SplattingSplatting

• Alternative to ray tracing

• Assign shape to each voxel (e.g., sphere or Gaussian)

• Project onto image plane (splat)

• Draw voxels back-to-front

• Composite (a-blend)

Draw back to front

Three Options

•Ray Casting

•Splatting

•3D Textures

3D Textures3D Textures

• Alternative to ray tracing, splatting

• Build a 3D texture (including opacity)

• Draw a stack of polygons, back-to-front

• Efficient if supported in graphics hardware

• Few polygons, much texture memory

3D RGBA texture

Draw back to front

Viewpoint

3D Textures3D Textures

• Alternative to ray tracing, splatting

• Build a 3D texture (including opacity)

• Draw a stack of polygons, back-to-front

• Efficient if supported in graphics hardware

• Few polygons, much texture memory

3D RGBA texture

Draw back to front

Viewpoint

Three Options

•Ray Casting

•Splatting

•3D Textures

3D Textures3D Textures

• Alternative to ray tracing, splatting

• Build a 3D texture (including opacity)

• Draw a stack of polygons, back-to-front

• Efficient if supported in graphics hardware

• Few polygons, much texture memory

3D RGBA texture

Draw back to front

Viewpoint

Three Options

•Ray Casting

•Splatting

•3D Textures

Volume Ray CastingVolume Ray Casting

• Ray Casting

– Integrate color and opacity along the ray

– Simplest scheme just takes equal steps along ray,

sampling opacity and color

– Grids make it easy to find the next cell
SplattingSplatting

• Alternative to ray tracing

• Assign shape to each voxel (e.g., sphere or Gaussian)

• Project onto image plane (splat)

• Draw voxels back-to-front

• Composite (a-blend)

3D Textures3D Textures

• Alternative to ray tracing, splatting

• Build a 3D texture (including opacity)

• Draw a stack of polygons, back-to-front

• Efficient if supported in graphics hardware

• Few polygons, much texture memory

3D RGBA texture

Draw back to front

Viewpoint

Two Options

•Surface Rendering

•Volume Rendering

Two Options

•Surface Rendering

•Volume Rendering

Visualization

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Basic Idea
• Which best conveys “reality?”

source: Jos Stam. Photography changes what we think “reality” looks like.

Photograph. Painting.
A Rough Sea at a Jetty, 1650.

Jacob van Ruysdael.

Computer Graphics
Duncan Brinsmead

Reality

• This instance in time never happened!

• Perhaps a better match of “subjective reality.”

• Better illustration of “what was going on.”

A Rough Sea at a Jetty, 1650. - Jacob van Ruysdael.

NPR

• This instance in time never happened!

• Perhaps a better match of “subjective reality.”

• Better illustration of “what was going on.”

A Rough Sea at a Jetty, 1650. - Jacob van Ruysdael.

Text

• Perhaps we can do better graphics...

• By doing non-photorealistic graphics!

NPR Pipeline
• NPR Research often follows this pipeline...

http://www.ohsu.edu/library/hom/exhibits/exhimages/200706anatomy/bEf1a5.jpg

(1) Study Existing
Rendering or

Illustration
Technique

4.4 Rendering conventions

Shading is a strong cue for conveying surface orientation and depth
relationships between structures. Illustrators often exaggerate shad-
ing to emphasize object shape. We describe two such illustrative
shading techniques that are shown in Figure 7.

occlusion
boundary

inset
amount

edge shading

edge
shadows

Ba
ck

gr
ou

nd
 C

re
di

t:
 L

ife
A

RT
 im

ag
e

Figure 7: Inset cuts and illus-
trative shading techniques.

Edge shadows. Cast shadows
provide strong depth cues at dis-
continuity edges. However, phys-
ically accurate shadows may also
darken and obscure important
parts. Instead, illustrators often
darken a thin region of the far
surface along the discontinuity
edge. Such edge shadows [Fran-
cis 1987] pull the near surface
closer to the viewer while push-
ing back the far surface. The
width and softness of edge shad-
ows usually vary with the dis-
crepancy in depth at the discontinuity edge; overlapping structures
that are close to one another have a tighter, darker shadow than
structures that are farther apart.

Edge shading. While simple diffuse shading provides information
about surface orientation, it can also cause planar surfaces that
face away from the light source to be rendered in a relatively dark
shadow, making it difficult to see surface detail. Some illustrators
solve this problem by darkening only the edges of the cut surface to
suggest diffuse shading [Hodges 1989]. As with edge shadows, the
width and softness of the darkened region may vary, but, in general,
the overall darkness depends on the surface orientation.

5 Implementation of illustration conventions

In this section, we introduce a parametric representation for cut-
aways of individual parts that makes it easy to create the differ-
ent types of cuts outlined in Section 4.1. We then describe how
our system determines good views for exposing user-selected tar-
get structures, based on the conventions discussed in Section 4.2.
Next, we explain our constraint-based approach for generating
view-dependent inset cuts, as described in Section 4.3. Finally, we
present simple rendering algorithms for generating the effects dis-
cussed in Section 4.4.

5.1 Cutaway representation

The input to our system is a 3D solid model in which each part or
structure is a separate geometric object. Our system cuts the model
by removing volumetric regions — cutting volumes — using CSG
constructive solid geometry (CSG) subtraction. Each volume cuts
exactly one part. As shown in Figure 8, we parameterize each of
the conventional cuts described in Section 4.1 using a 1D, 2D, or 3D
parameter space that is mapped to a volume in model space (i.e., the
local coordinates of the structure to be cut). Under these mappings,
cutting volumes are specified as simple parametric ranges that get
transformed to model space cutting volumes, which we represent as
polyhedral solids.

Object-aligned box cutting volumes
For object-aligned box cuts, we map a 3D parameter space u,v,w
to three orthogonal model space axes, u′,v′,w′ (Figure 8a). Under
this mapping an axis-aligned box in parameter space transforms to
an axis-aligned box in model space.

As noted in Section 4.1, object-aligned cuts are often oriented along
the principal axes of a part. To compute these axes, the system sam-

u’

v’

Parameter space

0

u

1

0

1

u

(a)
Object-
aligned
box cut

(b)
Transverse

tube cut

(c)
Wedge

tube cut

1

0

1

v

1

u

w

(d)
Freeform

window cut

(e)
Four-sided

window cut

1

0

1
u

v

u’

u’

Model space

u’

w’

v’

2!

0

1

1

u

v

w

u’

v’w’

model space
cutting volume

model space
cutting volume

max extents

parameter space
cutting volume

max extents

parameter space
cutting volume

Figure 8: Cutting volumes. In our system, a cut is represented as a
cutting volume that is defined in a one-, two-, or three-dimensional
parameter space (left column) and then mapped to the model’s local
coordinate system (right column). For each type of cut, the cutting
volume (purple) and its maximum extents (pink) are shown in both
parameter and model space. The model space mappings u′,v′,w′ of
the parametric dimensions u,v,w are also illustrated on the right.

ples the convex hull of the object and then performs principal com-
ponents analysis (PCA) on the resulting point cloud to determine
the three principal directions of variance. We also allow users to
directly specify three orthogonal model space axes as the principal
axes.

Tubular cutting volumes
Tube cuts are generally defined using a 3D parameter space. The u
axis in parameter space maps to the primary axis of the tube. The v
and w axes then map to the angular and radial components of a polar
coordinate system defined on the normal plane of the Frenet frame
of the primary axis (Figure 8c). Under this mapping, an axis-aligned
u,v,w box corresponds to a cutting volume that removes a wedge
from the structure. To create transverse cutting planes, the v and w
ranges are set to their maximum extents. Thus, transverse tube cuts
are fully parameterized using a 1D parameter space (Figure 8b).

To compute tubular cutting volumes efficiently from their paramet-
ric representation, the system precomputes the primary axis for
each tubular part. At runtime, the system constructs the cutting

(2) Extract General
Aesthetic Rules

(a) Arm (b) Thorax

(c) Turbine (d) Engine

Figure 15: Illustrations generated using our automatic cutaway generation interface. A combination of window and transverse tube cuts
removes the layers of skin, muscle and bone that occlude the target muscle in (a) and the internal organs of the thorax in (b). Extruded angle
tube cuts expose target parts within the turbine (c). Axis-aligned and transverse tube cuts reveal the engine’s crank shaft (d). In (c) and (d),
cut surfaces are highlighted in red.

Model Nlong Nshort Nrect Nshell Nauto Trig
Disk brake 1 24 2 0 24 3m

Turbine 0 37 3 0 36 5m
Engine 22 84 28 0 122 20m
Thorax 39 0 6 4 37 10m

Arm 20 0 0 1 20 3m
Neck 58 0 0 1 58 8m

Table 1: Rigging statistics. For each model, we report the num-
ber of long tubes Nlong, short radially symmetric tubes Nshort , rect-
angular parallelepipeds Nrect , and shells Nshell . We also indicate
the number of parts for which the automatically computed mapping
was used in the final rigged model Nauto. Finally, we report the user
time (in minutes) required to rig each model Trig.

rounding parts, making it difficult for viewers to understand how
the target relates spatially to its neighbors.

In terms of authoring effort, none of the models took more than 20
minutes to rig (see Table 1). The most time-consuming step was
identifying the type of cut to use for each part in the dataset. How-
ever, even for the engine model, which contains well over one hun-
dred parts, this entire process took less than 5 minutes.

As shown in Table 1, the system automatically computes good map-
pings for 90% of the parts. For the remaining 10% of parts, we were
able to specify a suitable mapping interactively in just a few sec-
onds. In most cases, this manual rigging was used to create wedge
cut mappings for parts that are clearly derived from cylinders but
exhibit a low degree of radial symmetry (e.g., parts that resemble
incomplete cylinders). In a few cases, we manually oriented the box
cut mappings for parts whose principal axes do not correspond to
the desired box cut axes. Finally, for some parts, we overrode the
automatically computed window cut mappings using our system’s
sketch-based rigging tools, which give the author more control over
the shape of the window boundary.

Although we have not conducted a formal user study, we have
demonstrated our system to medical educators and illustrators, ar-
chitects, and airplane engineers. All of the people we spoke with
were excited about the system’s ability to effectively expose the
internal structure of complex 3D datasets. Furthermore, the medi-
cal educators we interviewed said they would be willing to invest
some of the effort that they typically spend preparing class materi-
als to creating interactive cutaway illustrations that could be used
as teaching aids and study guides. This informal feedback suggests
that our system could be a useful and practical tool for creating and
viewing 3D datasets in a variety of scenarios. As future work, we

(3) “Algorithmicize”
These Rules

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Goal

Box Cut

Box Cut

Window Cut

Window Cut

Wedge Cut

Wedge Cut

Transverse Tube Cut

Transverse Tube Cut

Cut Taxonomy
4.4 Rendering conventions

Shading is a strong cue for conveying surface orientation and depth
relationships between structures. Illustrators often exaggerate shad-
ing to emphasize object shape. We describe two such illustrative
shading techniques that are shown in Figure 7.

occlusion
boundary

inset
amount

edge shading

edge
shadows

Ba
ck

gr
ou

nd
 C

re
di

t:
 L

ife
A

RT
 im

ag
e

Figure 7: Inset cuts and illus-
trative shading techniques.

Edge shadows. Cast shadows
provide strong depth cues at dis-
continuity edges. However, phys-
ically accurate shadows may also
darken and obscure important
parts. Instead, illustrators often
darken a thin region of the far
surface along the discontinuity
edge. Such edge shadows [Fran-
cis 1987] pull the near surface
closer to the viewer while push-
ing back the far surface. The
width and softness of edge shad-
ows usually vary with the dis-
crepancy in depth at the discontinuity edge; overlapping structures
that are close to one another have a tighter, darker shadow than
structures that are farther apart.

Edge shading. While simple diffuse shading provides information
about surface orientation, it can also cause planar surfaces that
face away from the light source to be rendered in a relatively dark
shadow, making it difficult to see surface detail. Some illustrators
solve this problem by darkening only the edges of the cut surface to
suggest diffuse shading [Hodges 1989]. As with edge shadows, the
width and softness of the darkened region may vary, but, in general,
the overall darkness depends on the surface orientation.

5 Implementation of illustration conventions

In this section, we introduce a parametric representation for cut-
aways of individual parts that makes it easy to create the differ-
ent types of cuts outlined in Section 4.1. We then describe how
our system determines good views for exposing user-selected tar-
get structures, based on the conventions discussed in Section 4.2.
Next, we explain our constraint-based approach for generating
view-dependent inset cuts, as described in Section 4.3. Finally, we
present simple rendering algorithms for generating the effects dis-
cussed in Section 4.4.

5.1 Cutaway representation

The input to our system is a 3D solid model in which each part or
structure is a separate geometric object. Our system cuts the model
by removing volumetric regions — cutting volumes — using CSG
constructive solid geometry (CSG) subtraction. Each volume cuts
exactly one part. As shown in Figure 8, we parameterize each of
the conventional cuts described in Section 4.1 using a 1D, 2D, or 3D
parameter space that is mapped to a volume in model space (i.e., the
local coordinates of the structure to be cut). Under these mappings,
cutting volumes are specified as simple parametric ranges that get
transformed to model space cutting volumes, which we represent as
polyhedral solids.

Object-aligned box cutting volumes
For object-aligned box cuts, we map a 3D parameter space u,v,w
to three orthogonal model space axes, u′,v′,w′ (Figure 8a). Under
this mapping an axis-aligned box in parameter space transforms to
an axis-aligned box in model space.

As noted in Section 4.1, object-aligned cuts are often oriented along
the principal axes of a part. To compute these axes, the system sam-

u’

v’

Parameter space

0

u

1

0

1

u

(a)
Object-
aligned
box cut

(b)
Transverse

tube cut

(c)
Wedge

tube cut

1

0

1

v

1

u

w

(d)
Freeform

window cut

(e)
Four-sided

window cut

1

0

1
u

v

u’

u’

Model space

u’

w’

v’

2!

0

1

1

u

v

w

u’

v’w’

model space
cutting volume

model space
cutting volume

max extents

parameter space
cutting volume

max extents

parameter space
cutting volume

Figure 8: Cutting volumes. In our system, a cut is represented as a
cutting volume that is defined in a one-, two-, or three-dimensional
parameter space (left column) and then mapped to the model’s local
coordinate system (right column). For each type of cut, the cutting
volume (purple) and its maximum extents (pink) are shown in both
parameter and model space. The model space mappings u′,v′,w′ of
the parametric dimensions u,v,w are also illustrated on the right.

ples the convex hull of the object and then performs principal com-
ponents analysis (PCA) on the resulting point cloud to determine
the three principal directions of variance. We also allow users to
directly specify three orthogonal model space axes as the principal
axes.

Tubular cutting volumes
Tube cuts are generally defined using a 3D parameter space. The u
axis in parameter space maps to the primary axis of the tube. The v
and w axes then map to the angular and radial components of a polar
coordinate system defined on the normal plane of the Frenet frame
of the primary axis (Figure 8c). Under this mapping, an axis-aligned
u,v,w box corresponds to a cutting volume that removes a wedge
from the structure. To create transverse cutting planes, the v and w
ranges are set to their maximum extents. Thus, transverse tube cuts
are fully parameterized using a 1D parameter space (Figure 8b).

To compute tubular cutting volumes efficiently from their paramet-
ric representation, the system precomputes the primary axis for
each tubular part. At runtime, the system constructs the cutting

Results

(Source: Li et al. InteractiveCutawayIllustrationsofComplex3DModels)

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Goal

http://www.cs.princeton.edu/gfx/pubs/Cole_2008_WDP/index.php

Contours

In SIGGRAPH 2003

Suggestive Contours for Conveying Shape

Doug DeCarlo1 Adam Finkelstein2 Szymon Rusinkiewicz2 Anthony Santella1

1Department of Computer Science & Center for Cognitive Science 2Department of Computer Science

Rutgers University Princeton University

Abstract

In this paper, we describe a non-photorealistic rendering system that
conveys shape using lines. We go beyond contours and creases by
developing a new type of line to draw: the suggestive contour. Sug-
gestive contours are lines drawn on clearly visible parts of the sur-
face, where a true contour would first appear with a minimal change
in viewpoint. We provide two methods for calculating suggestive
contours, including an algorithm that finds the zero crossings of the
radial curvature. We show that suggestive contours can be drawn
consistently with true contours, because they anticipate and extend
them. We present a variety of results, arguing that these images
convey shape more effectively than contour alone.

Keywords: non-photorealistic rendering, contours, silhouettes

1 Introduction

Our interpretation of natural imagery draws upon a wealth of vi-
sual cues, including contours,1 texture, shading, shadow, and many
others. Since each individual cue can be noisy, ambiguous or even
misleading, our visual system integrates all the information it re-
ceives to obtain a consistent explanation of the scene.

When artists design imagery to portray a scene, they do not just
render visual cues veridically. Instead, they select which visual cues
to portray and adapt the information each cue carries. Such imagery
departs dramatically from natural scenes, but nevertheless conveys
visual information effectively, because viewers’ perceptual infer-
ences still work flexibly to arrive at a consistent interpretation.

In this paper, we suggest that lines in line-drawings can convey
information about shape in this indirect way, and develop tools for
realizing such lines automatically in non-photorealistic rendering
(NPR). We start from the observation that many lines in natural and
artistic imagery come from contours, where a surface turns away
from the viewer and becomes invisible. As in the rendering at left
in Figure 1, contours can be quite limited in the information they
convey about shape on their own. But the visual system is readily
capable of relaxing the natural interpretation of lines as contours;
instead, it can read lines merely as features where a surface bends
sharply away from the viewer, yet remains visible—as features that
are almost contours, that become contours in nearby views. We
call these suggestive contours. When we draw suggestive contours
alongside contours, as in the rendering at right in Figure 1, we exag-
gerate the shape information provided by contours to make a sparse
line-drawing easier to understand. Figure 1 suggests how the two

Figure 1: An example showing the expressiveness added by sugges-
tive contours. The left image is drawn using contours alone, while
the right image uses both contours and suggestive contours.

kinds of lines together convey an object’s shape consistently and
precisely.

In this paper, we describe new NPR techniques based on sugges-
tive contours. Our system produces still frames, such as those in
Figure 1, which combine contours with a selection of those sugges-
tive contours that are stable, given small perturbations of the view-
point or surface. In introducing, characterizing and implementing
suggestive contours, we make the following contributions:

• We offer several intuitive characterizations of lines that can
augment true contours to help convey shape.

• We provide mathematical definitions corresponding to each
of these intuitive characterizations, and show that these defi-
nitions are equivalent.

• We describe the mathematical relationship between sugges-
tive contours and contours, showing that suggestive contours,
despite being drawn on clearly visible parts of the surface, in-
tegrate with true contours in a seamless and consistent way.

• We provide two algorithms (one in object space and one in
image space) for finding and rendering suggestive contours.

• We show imagery created by our implementation, demonstrat-
ing that suggestive contours complement contours in convey-
ing shape effectively.

1.1 Related work

Lines are the scaffold of non-photorealistic rendering of 3D shape;
and contours, which offer perhaps the strongest shape cue for
smooth objects [Koenderink 1984], make great lines [Gooch et al.
1999; Hertzmann and Zorin 2000; Kalnins et al. 2002; Markosian
et al. 1997; Raskar 2001; Winkenbach and Salesin 1994]. In many
cases, however, contours alone cannot convey salient and important
aspects of a rendered object, and additional lines are needed.

Before this work, all other lines drawn from general 3D shapes
have been features fixed on the surface. Creases are the most fre-
quent example [Kalnins et al. 2002; Markosian et al. 1997; Raskar
2001; Saito and Takahashi 1990; Winkenbach and Salesin 1994];
this can yield a pronounced improvement, but only when creases
are conspicuous features of an object’s shape (as for a cube, for ex-
ample). On smooth surfaces, ridges and valleys, also called crest

1There is significant variability in terminology—these are often called

silhouettes [Markosian et al. 1997; Hertzmann and Zorin 2000].

In SIGGRAPH 2003

contour
(2D)

contour
generator
(3D)

ending
contour

x

y

contour
generator

ending
contour

from camera

x

y

(a) (b)

Figure 2: The contour generator is the set of points on the sur-
face whose normal vector is perpendicular to the viewing direction.
(a) When projected into the image, its visible portions are called
the contour. (b) A topographic map of the surface in (a) with the
contour generator shown in green. The portion that projects to the
contour is drawn solid.

lines, provide features much like creases, and can help convey
the structure and complexity of an object [Interrante et al. 1995].
Ridges and valleys, however, lack the view-dependent nature that
hand-drawn pictures possess. Consider a drawing of a face. In pro-
file, an artist would indeed draw a line along the ridge of the nose
(as in Figure 1). However, for a frontal view the artist would instead
draw lines on one or both sides of the nose (as in the top right of
Figure 9).

Whelan [2001] has proposed view-dependent lines for rendering
terrain, called formulated silhouettes. Formulated silhouettes are
determined from those regions that become occluded in a single al-
ternative view where the camera is lowered by a prescribed amount.
This represents a related approach to ours in so far as these lines ap-
proximate some fraction of the suggestive contours of terrain.

Because we propose image-space as well as object-space algo-
rithms for computing suggestive contours, our work compares with
previous image manipulations that find lines in real images. In
particular, Pearson and Robinson [1985] and Iverson and Zucker
[1995] extract linear features along the darkest parts of the image
(valleys in the image). Our image-space algorithm takes a broadly
similar form (though of course without the robustness required for
real images), and thus our theoretical arguments offer a new per-
spective on these techniques.

1.2 Background: Contours

It is obvious what contours are in an image, but defining suggestive
contours requires an understanding of contours on objects. This
section draws in part on Cipolla and Giblin [2000] to summarize
the geometry of contour formation, and the important surface prop-
erties, such as curvature, that contours reflect.

Consider a view of a smooth and closed surface S from a per-
spective camera centered at c. The contour generator is defined as
the set of points that lie on this surface and satisfy:

n(p) ·v(p) = 0 (1)

where p ∈ S is a point on the surface, n(p) is the unit surface nor-
mal at p, and v is the view vector: v(p) = c−p. From the typical
(generic) viewpoint, the contour generator consists of a set of dis-
connected loops on the surface. The contour consists of the visible
portions of these curves, projected into the image plane. Wherever
the contour generator is viewed from one of its tangent directions,
the contour abruptly stops—this is an ending contour. Figure 2(a)
illustrates contour generators, contours, and ending contours. A top
view of this surface appears in (b), with the contour generators from
(a) portrayed directly on the surface.

When working with polyhedra, it is easy to compute the loca-
tions of contours. The contour generator is the set of polyhedral

n v

p
w

tangent plane

radial curve

n

p
w

radial plane

(a) (b)

Figure 3: (a) The view vector v is projected onto the tangent plane
to obtain w. (b) The radial plane is formed by p, n and w and slices
the surface along the radial curve—the curvature of which is !r(p).

edges that join a polygon facing the camera with one facing away
from it [Appel 1967]. This strategy detects sign changes in n · v.
However, with smooth surfaces, we must solve (1) over the entire
surface [Hertzmann and Zorin 2000].

In characterizing suggestive contours, we will also use the no-
tion of the curvature of a curve. The curvature !(p) at a point p on
a curve is the reciprocal of the radius of the circle that best approx-
imates the curve at p [Hilbert and Cohn-Vossen 1932; do Carmo
1976]. Smaller curvature values correspond to larger circles; a line
has curvature zero. The sign of the curvature requires an orientation
to be specified (using a normal vector). Our convention is that when
the circle is beneath the curve (i.e. the normal vector points away
from the center of the circle), the curvature is positive: a convexity.2

Concave parts have negative curvature. Zero curvature corresponds
either to an inflection point or a line.

The curvature of the surface S at a point p is measured along a
chosen curve that sits on the surface and passes through p. Com-
monly, this curve is obtained by intersecting the surface with the
plane that contains p, the unit surface normal n, and a specific di-
rection d which lies in the tangent plane of S at p. This construction
yields the normal curvature, which varies smoothly with the direc-
tion, and ranges between the principal curvatures !1(p) and !2(p),
which are realized in their respective principal curvature directions
[do Carmo 1976]. Of particular relevance in this work is the radial
curvature !r(p) [Koenderink 1984], which is the normal curvature
of the surface in the direction of w defined as the (unnormalized)
projection of the view vector v onto the tangent plane at p. See Fig-
ure 3. We are extending Koenderink’s definition—!r was originally
defined only along the contour generator, where v already sits in the
tangent plane (so that w = v). The radial curvature remains unde-
fined wherever v and n are parallel (as w = 0), but these surface
locations are not of concern in this work.

2 Suggestive contours

Informally, suggestive contours are curves along which the radial
curvature is zero and where the surface bends away from the viewer
(as opposed to bending towards them). Equivalently, they are those
locations at which the surface is almost in contour from the origi-
nal viewpoint—locations at which the dot product in (1) is a pos-
itive local minimum rather than a zero. They also correspond to
true contours in relatively nearby viewpoints. In this section, we
define suggestive contours formally in terms of a suggestive con-
tour generator, which sits on the surface. Figure 4 illustrates this.
Figure 4(a) overlays the suggestive contours drawn in blue on the
image of Figure 2(a), while Figure 4(b) presents the suggestive con-
tour generator in a topographic view; the portion that projects to the
suggestive contour is drawn solid.

2While this is the opposite convention from do Carmo [1976], it corre-

sponds to outward-pointing surface normals.

Suggestive Contours

In SIGGRAPH 2003

Suggestive Contours for Conveying Shape

Doug DeCarlo1 Adam Finkelstein2 Szymon Rusinkiewicz2 Anthony Santella1

1Department of Computer Science & Center for Cognitive Science 2Department of Computer Science

Rutgers University Princeton University

Abstract

In this paper, we describe a non-photorealistic rendering system that
conveys shape using lines. We go beyond contours and creases by
developing a new type of line to draw: the suggestive contour. Sug-
gestive contours are lines drawn on clearly visible parts of the sur-
face, where a true contour would first appear with a minimal change
in viewpoint. We provide two methods for calculating suggestive
contours, including an algorithm that finds the zero crossings of the
radial curvature. We show that suggestive contours can be drawn
consistently with true contours, because they anticipate and extend
them. We present a variety of results, arguing that these images
convey shape more effectively than contour alone.

Keywords: non-photorealistic rendering, contours, silhouettes

1 Introduction

Our interpretation of natural imagery draws upon a wealth of vi-
sual cues, including contours,1 texture, shading, shadow, and many
others. Since each individual cue can be noisy, ambiguous or even
misleading, our visual system integrates all the information it re-
ceives to obtain a consistent explanation of the scene.

When artists design imagery to portray a scene, they do not just
render visual cues veridically. Instead, they select which visual cues
to portray and adapt the information each cue carries. Such imagery
departs dramatically from natural scenes, but nevertheless conveys
visual information effectively, because viewers’ perceptual infer-
ences still work flexibly to arrive at a consistent interpretation.

In this paper, we suggest that lines in line-drawings can convey
information about shape in this indirect way, and develop tools for
realizing such lines automatically in non-photorealistic rendering
(NPR). We start from the observation that many lines in natural and
artistic imagery come from contours, where a surface turns away
from the viewer and becomes invisible. As in the rendering at left
in Figure 1, contours can be quite limited in the information they
convey about shape on their own. But the visual system is readily
capable of relaxing the natural interpretation of lines as contours;
instead, it can read lines merely as features where a surface bends
sharply away from the viewer, yet remains visible—as features that
are almost contours, that become contours in nearby views. We
call these suggestive contours. When we draw suggestive contours
alongside contours, as in the rendering at right in Figure 1, we exag-
gerate the shape information provided by contours to make a sparse
line-drawing easier to understand. Figure 1 suggests how the two

Figure 1: An example showing the expressiveness added by sugges-
tive contours. The left image is drawn using contours alone, while
the right image uses both contours and suggestive contours.

kinds of lines together convey an object’s shape consistently and
precisely.

In this paper, we describe new NPR techniques based on sugges-
tive contours. Our system produces still frames, such as those in
Figure 1, which combine contours with a selection of those sugges-
tive contours that are stable, given small perturbations of the view-
point or surface. In introducing, characterizing and implementing
suggestive contours, we make the following contributions:

• We offer several intuitive characterizations of lines that can
augment true contours to help convey shape.

• We provide mathematical definitions corresponding to each
of these intuitive characterizations, and show that these defi-
nitions are equivalent.

• We describe the mathematical relationship between sugges-
tive contours and contours, showing that suggestive contours,
despite being drawn on clearly visible parts of the surface, in-
tegrate with true contours in a seamless and consistent way.

• We provide two algorithms (one in object space and one in
image space) for finding and rendering suggestive contours.

• We show imagery created by our implementation, demonstrat-
ing that suggestive contours complement contours in convey-
ing shape effectively.

1.1 Related work

Lines are the scaffold of non-photorealistic rendering of 3D shape;
and contours, which offer perhaps the strongest shape cue for
smooth objects [Koenderink 1984], make great lines [Gooch et al.
1999; Hertzmann and Zorin 2000; Kalnins et al. 2002; Markosian
et al. 1997; Raskar 2001; Winkenbach and Salesin 1994]. In many
cases, however, contours alone cannot convey salient and important
aspects of a rendered object, and additional lines are needed.

Before this work, all other lines drawn from general 3D shapes
have been features fixed on the surface. Creases are the most fre-
quent example [Kalnins et al. 2002; Markosian et al. 1997; Raskar
2001; Saito and Takahashi 1990; Winkenbach and Salesin 1994];
this can yield a pronounced improvement, but only when creases
are conspicuous features of an object’s shape (as for a cube, for ex-
ample). On smooth surfaces, ridges and valleys, also called crest

1There is significant variability in terminology—these are often called

silhouettes [Markosian et al. 1997; Hertzmann and Zorin 2000].

In SIGGRAPH 2003

contour
(2D)

contour
generator
(3D)

ending
contour

x

y

contour
generator

ending
contour

from camera

x

y

(a) (b)

Figure 2: The contour generator is the set of points on the sur-
face whose normal vector is perpendicular to the viewing direction.
(a) When projected into the image, its visible portions are called
the contour. (b) A topographic map of the surface in (a) with the
contour generator shown in green. The portion that projects to the
contour is drawn solid.

lines, provide features much like creases, and can help convey
the structure and complexity of an object [Interrante et al. 1995].
Ridges and valleys, however, lack the view-dependent nature that
hand-drawn pictures possess. Consider a drawing of a face. In pro-
file, an artist would indeed draw a line along the ridge of the nose
(as in Figure 1). However, for a frontal view the artist would instead
draw lines on one or both sides of the nose (as in the top right of
Figure 9).

Whelan [2001] has proposed view-dependent lines for rendering
terrain, called formulated silhouettes. Formulated silhouettes are
determined from those regions that become occluded in a single al-
ternative view where the camera is lowered by a prescribed amount.
This represents a related approach to ours in so far as these lines ap-
proximate some fraction of the suggestive contours of terrain.

Because we propose image-space as well as object-space algo-
rithms for computing suggestive contours, our work compares with
previous image manipulations that find lines in real images. In
particular, Pearson and Robinson [1985] and Iverson and Zucker
[1995] extract linear features along the darkest parts of the image
(valleys in the image). Our image-space algorithm takes a broadly
similar form (though of course without the robustness required for
real images), and thus our theoretical arguments offer a new per-
spective on these techniques.

1.2 Background: Contours

It is obvious what contours are in an image, but defining suggestive
contours requires an understanding of contours on objects. This
section draws in part on Cipolla and Giblin [2000] to summarize
the geometry of contour formation, and the important surface prop-
erties, such as curvature, that contours reflect.

Consider a view of a smooth and closed surface S from a per-
spective camera centered at c. The contour generator is defined as
the set of points that lie on this surface and satisfy:

n(p) ·v(p) = 0 (1)

where p ∈ S is a point on the surface, n(p) is the unit surface nor-
mal at p, and v is the view vector: v(p) = c−p. From the typical
(generic) viewpoint, the contour generator consists of a set of dis-
connected loops on the surface. The contour consists of the visible
portions of these curves, projected into the image plane. Wherever
the contour generator is viewed from one of its tangent directions,
the contour abruptly stops—this is an ending contour. Figure 2(a)
illustrates contour generators, contours, and ending contours. A top
view of this surface appears in (b), with the contour generators from
(a) portrayed directly on the surface.

When working with polyhedra, it is easy to compute the loca-
tions of contours. The contour generator is the set of polyhedral

n v

p
w

tangent plane

radial curve

n

p
w

radial plane

(a) (b)

Figure 3: (a) The view vector v is projected onto the tangent plane
to obtain w. (b) The radial plane is formed by p, n and w and slices
the surface along the radial curve—the curvature of which is !r(p).

edges that join a polygon facing the camera with one facing away
from it [Appel 1967]. This strategy detects sign changes in n · v.
However, with smooth surfaces, we must solve (1) over the entire
surface [Hertzmann and Zorin 2000].

In characterizing suggestive contours, we will also use the no-
tion of the curvature of a curve. The curvature !(p) at a point p on
a curve is the reciprocal of the radius of the circle that best approx-
imates the curve at p [Hilbert and Cohn-Vossen 1932; do Carmo
1976]. Smaller curvature values correspond to larger circles; a line
has curvature zero. The sign of the curvature requires an orientation
to be specified (using a normal vector). Our convention is that when
the circle is beneath the curve (i.e. the normal vector points away
from the center of the circle), the curvature is positive: a convexity.2

Concave parts have negative curvature. Zero curvature corresponds
either to an inflection point or a line.

The curvature of the surface S at a point p is measured along a
chosen curve that sits on the surface and passes through p. Com-
monly, this curve is obtained by intersecting the surface with the
plane that contains p, the unit surface normal n, and a specific di-
rection d which lies in the tangent plane of S at p. This construction
yields the normal curvature, which varies smoothly with the direc-
tion, and ranges between the principal curvatures !1(p) and !2(p),
which are realized in their respective principal curvature directions
[do Carmo 1976]. Of particular relevance in this work is the radial
curvature !r(p) [Koenderink 1984], which is the normal curvature
of the surface in the direction of w defined as the (unnormalized)
projection of the view vector v onto the tangent plane at p. See Fig-
ure 3. We are extending Koenderink’s definition—!r was originally
defined only along the contour generator, where v already sits in the
tangent plane (so that w = v). The radial curvature remains unde-
fined wherever v and n are parallel (as w = 0), but these surface
locations are not of concern in this work.

2 Suggestive contours

Informally, suggestive contours are curves along which the radial
curvature is zero and where the surface bends away from the viewer
(as opposed to bending towards them). Equivalently, they are those
locations at which the surface is almost in contour from the origi-
nal viewpoint—locations at which the dot product in (1) is a pos-
itive local minimum rather than a zero. They also correspond to
true contours in relatively nearby viewpoints. In this section, we
define suggestive contours formally in terms of a suggestive con-
tour generator, which sits on the surface. Figure 4 illustrates this.
Figure 4(a) overlays the suggestive contours drawn in blue on the
image of Figure 2(a), while Figure 4(b) presents the suggestive con-
tour generator in a topographic view; the portion that projects to the
suggestive contour is drawn solid.

2While this is the opposite convention from do Carmo [1976], it corre-

sponds to outward-pointing surface normals.

min

Examples
In SIGGRAPH 2003

Figure 12: Left: only contours; Center: results of the object-space
algorithm for the David (80K polygons), drawn using thicker lines
(for stylistic reasons); Right: results of the image-space algorithm
for the David (500K polygons).

of the cow and hippo, or the torso and knees of the David, sugges-
tive contours highlight hollows and dimples that the viewer would
not otherwise have suspected. Suggestive contours convey small
shape features as well as large ones: in the eyes or toes of the fig-
ures, in the elephant’s trunk, in the texturing of the bunny (in Fig-
ure 13, right). These bumps and indentations show up in much the
same manner as an artist would depict them. Suggestive contours
can also convey folds in the surface when they are deep enough to
contain an inflection point, as are the wrinkles in the hand.

Comparisons to other strategies We now present comparisons
to two methods whose goal is also to draw lines that are visual
cues for shape. First, inspired by the work of Saito and Takahashi
[1990], we implemented an algorithm that finds discontinuities in
the depth buffer using a Canny edge detector [Canny 1986], and
renders these lines. Next, we implemented an algorithm for detect-
ing ridge and valley lines. We render just the valleys here; in our
experience, we have found that rendering both ridges and valleys
yields a cluttered result. (For many models, it is possible to locate
ridges and valleys as simply the creases in the model—edges along
which the dihedral angle is small. For more highly-tessellated mod-
els, however, this definition is inadequate, and we instead define
ridges and valleys as the local maxima or minima, respectively, of
the larger (in magnitude) principal curvature, in the corresponding
principal direction [Interrante et al. 1995; Lengagne et al. 1996].
In order to compute these robustly, we find the principal curvatures
and directions and perform non-maximum suppression and hystere-
sis thresholding operations similar to those used in the Canny edge
detector [Canny 1986]. In particular, for each vertex of the mesh we
locate the two neighboring vertices with the most positive and neg-
ative projections onto the first principal direction, and discard the

Figure 13: Comparison of several visual effects (two views of
each): Left: edge detection applied to the depth map to extract
depth discontinuities. Center: contours with valley lines computed
as local maxima of curvature. Right: contours with suggestive con-
tours computed using the object-space algorithm.

vertex unless its first principal curvature is more extreme than both.
Then, we connect all remaining vertices with chains of edges, keep-
ing only the chains for which each vertex has curvature above some
low threshold and at least one vertex has curvature above some high
threshold.)

It’s clear from Figure 13 that computing edges of the depth map
(left) conveys little more than contour does. In fact, we needed
to adjust the edge detector thresholds to be very sensitive to get
any additional lines at all. Valleys (center) sometimes highlight im-
portant shape features, as with the nose, eyes, ears and feet of the
bunny; unlike suggestive contours, these features are localized on
the surface, and as the view changes to wash out the relief of these
features, they start to look like surface markings. Elsewhere, as
at the haunches, the valleys can reduce to a distracting network,
evocative of terrain. Finally, the suggestive contours (right) convey
the shape effectively as in the earlier examples. But the many lines
portraying the texture of the bunny give the image a somewhat dis-
organized appearance, without highlighting structural features, for
example on the face, as explicitly as the valleys do.

5 Discussion and Conclusion

In this paper, we have explored drawings that portray objects’ sug-
gestive contours. We have characterized these suggestive contours
simultaneously in terms of the geometry of the object under the
current view, and in terms of the appearance of the object in nearby
views. On this characterization, suggestive contours are a way of
exaggerating a rendering, by using lines that are almost contours
to give added visual evidence of surface geometry. Our percep-
tual abilities make us sensitive to the reliable visual information in
such renderings, and they thus can portray richer and more detailed
shape information than true contours do alone. We have supported
this intuitive account of suggestive contours with a mathematical
formalization which substantiates the compatibility of true contours
and suggestive contours, and which enables us to describe a variety
of algorithms, including some familiar ones, that can extract and
stabilize suggestive contours.

Our initial progress with suggestive contours motivates more
substantial perceptual, aesthetic and computational investigations.
Perceptual research that establishes how people perceive drawings

In SIGGRAPH 2003

Figure 12: Left: only contours; Center: results of the object-space
algorithm for the David (80K polygons), drawn using thicker lines
(for stylistic reasons); Right: results of the image-space algorithm
for the David (500K polygons).

of the cow and hippo, or the torso and knees of the David, sugges-
tive contours highlight hollows and dimples that the viewer would
not otherwise have suspected. Suggestive contours convey small
shape features as well as large ones: in the eyes or toes of the fig-
ures, in the elephant’s trunk, in the texturing of the bunny (in Fig-
ure 13, right). These bumps and indentations show up in much the
same manner as an artist would depict them. Suggestive contours
can also convey folds in the surface when they are deep enough to
contain an inflection point, as are the wrinkles in the hand.

Comparisons to other strategies We now present comparisons
to two methods whose goal is also to draw lines that are visual
cues for shape. First, inspired by the work of Saito and Takahashi
[1990], we implemented an algorithm that finds discontinuities in
the depth buffer using a Canny edge detector [Canny 1986], and
renders these lines. Next, we implemented an algorithm for detect-
ing ridge and valley lines. We render just the valleys here; in our
experience, we have found that rendering both ridges and valleys
yields a cluttered result. (For many models, it is possible to locate
ridges and valleys as simply the creases in the model—edges along
which the dihedral angle is small. For more highly-tessellated mod-
els, however, this definition is inadequate, and we instead define
ridges and valleys as the local maxima or minima, respectively, of
the larger (in magnitude) principal curvature, in the corresponding
principal direction [Interrante et al. 1995; Lengagne et al. 1996].
In order to compute these robustly, we find the principal curvatures
and directions and perform non-maximum suppression and hystere-
sis thresholding operations similar to those used in the Canny edge
detector [Canny 1986]. In particular, for each vertex of the mesh we
locate the two neighboring vertices with the most positive and neg-
ative projections onto the first principal direction, and discard the

Figure 13: Comparison of several visual effects (two views of
each): Left: edge detection applied to the depth map to extract
depth discontinuities. Center: contours with valley lines computed
as local maxima of curvature. Right: contours with suggestive con-
tours computed using the object-space algorithm.

vertex unless its first principal curvature is more extreme than both.
Then, we connect all remaining vertices with chains of edges, keep-
ing only the chains for which each vertex has curvature above some
low threshold and at least one vertex has curvature above some high
threshold.)

It’s clear from Figure 13 that computing edges of the depth map
(left) conveys little more than contour does. In fact, we needed
to adjust the edge detector thresholds to be very sensitive to get
any additional lines at all. Valleys (center) sometimes highlight im-
portant shape features, as with the nose, eyes, ears and feet of the
bunny; unlike suggestive contours, these features are localized on
the surface, and as the view changes to wash out the relief of these
features, they start to look like surface markings. Elsewhere, as
at the haunches, the valleys can reduce to a distracting network,
evocative of terrain. Finally, the suggestive contours (right) convey
the shape effectively as in the earlier examples. But the many lines
portraying the texture of the bunny give the image a somewhat dis-
organized appearance, without highlighting structural features, for
example on the face, as explicitly as the valleys do.

5 Discussion and Conclusion

In this paper, we have explored drawings that portray objects’ sug-
gestive contours. We have characterized these suggestive contours
simultaneously in terms of the geometry of the object under the
current view, and in terms of the appearance of the object in nearby
views. On this characterization, suggestive contours are a way of
exaggerating a rendering, by using lines that are almost contours
to give added visual evidence of surface geometry. Our percep-
tual abilities make us sensitive to the reliable visual information in
such renderings, and they thus can portray richer and more detailed
shape information than true contours do alone. We have supported
this intuitive account of suggestive contours with a mathematical
formalization which substantiates the compatibility of true contours
and suggestive contours, and which enables us to describe a variety
of algorithms, including some familiar ones, that can extract and
stabilize suggestive contours.

Our initial progress with suggestive contours motivates more
substantial perceptual, aesthetic and computational investigations.
Perceptual research that establishes how people perceive drawings

In SIGGRAPH 2003

Suggestive Contours for Conveying Shape

Doug DeCarlo1 Adam Finkelstein2 Szymon Rusinkiewicz2 Anthony Santella1

1Department of Computer Science & Center for Cognitive Science 2Department of Computer Science

Rutgers University Princeton University

Abstract

In this paper, we describe a non-photorealistic rendering system that
conveys shape using lines. We go beyond contours and creases by
developing a new type of line to draw: the suggestive contour. Sug-
gestive contours are lines drawn on clearly visible parts of the sur-
face, where a true contour would first appear with a minimal change
in viewpoint. We provide two methods for calculating suggestive
contours, including an algorithm that finds the zero crossings of the
radial curvature. We show that suggestive contours can be drawn
consistently with true contours, because they anticipate and extend
them. We present a variety of results, arguing that these images
convey shape more effectively than contour alone.

Keywords: non-photorealistic rendering, contours, silhouettes

1 Introduction

Our interpretation of natural imagery draws upon a wealth of vi-
sual cues, including contours,1 texture, shading, shadow, and many
others. Since each individual cue can be noisy, ambiguous or even
misleading, our visual system integrates all the information it re-
ceives to obtain a consistent explanation of the scene.

When artists design imagery to portray a scene, they do not just
render visual cues veridically. Instead, they select which visual cues
to portray and adapt the information each cue carries. Such imagery
departs dramatically from natural scenes, but nevertheless conveys
visual information effectively, because viewers’ perceptual infer-
ences still work flexibly to arrive at a consistent interpretation.

In this paper, we suggest that lines in line-drawings can convey
information about shape in this indirect way, and develop tools for
realizing such lines automatically in non-photorealistic rendering
(NPR). We start from the observation that many lines in natural and
artistic imagery come from contours, where a surface turns away
from the viewer and becomes invisible. As in the rendering at left
in Figure 1, contours can be quite limited in the information they
convey about shape on their own. But the visual system is readily
capable of relaxing the natural interpretation of lines as contours;
instead, it can read lines merely as features where a surface bends
sharply away from the viewer, yet remains visible—as features that
are almost contours, that become contours in nearby views. We
call these suggestive contours. When we draw suggestive contours
alongside contours, as in the rendering at right in Figure 1, we exag-
gerate the shape information provided by contours to make a sparse
line-drawing easier to understand. Figure 1 suggests how the two

Figure 1: An example showing the expressiveness added by sugges-
tive contours. The left image is drawn using contours alone, while
the right image uses both contours and suggestive contours.

kinds of lines together convey an object’s shape consistently and
precisely.

In this paper, we describe new NPR techniques based on sugges-
tive contours. Our system produces still frames, such as those in
Figure 1, which combine contours with a selection of those sugges-
tive contours that are stable, given small perturbations of the view-
point or surface. In introducing, characterizing and implementing
suggestive contours, we make the following contributions:

• We offer several intuitive characterizations of lines that can
augment true contours to help convey shape.

• We provide mathematical definitions corresponding to each
of these intuitive characterizations, and show that these defi-
nitions are equivalent.

• We describe the mathematical relationship between sugges-
tive contours and contours, showing that suggestive contours,
despite being drawn on clearly visible parts of the surface, in-
tegrate with true contours in a seamless and consistent way.

• We provide two algorithms (one in object space and one in
image space) for finding and rendering suggestive contours.

• We show imagery created by our implementation, demonstrat-
ing that suggestive contours complement contours in convey-
ing shape effectively.

1.1 Related work

Lines are the scaffold of non-photorealistic rendering of 3D shape;
and contours, which offer perhaps the strongest shape cue for
smooth objects [Koenderink 1984], make great lines [Gooch et al.
1999; Hertzmann and Zorin 2000; Kalnins et al. 2002; Markosian
et al. 1997; Raskar 2001; Winkenbach and Salesin 1994]. In many
cases, however, contours alone cannot convey salient and important
aspects of a rendered object, and additional lines are needed.

Before this work, all other lines drawn from general 3D shapes
have been features fixed on the surface. Creases are the most fre-
quent example [Kalnins et al. 2002; Markosian et al. 1997; Raskar
2001; Saito and Takahashi 1990; Winkenbach and Salesin 1994];
this can yield a pronounced improvement, but only when creases
are conspicuous features of an object’s shape (as for a cube, for ex-
ample). On smooth surfaces, ridges and valleys, also called crest

1There is significant variability in terminology—these are often called

silhouettes [Markosian et al. 1997; Hertzmann and Zorin 2000].

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Goal
To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists

2

Problem To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists

2

Idea

To appear in the ACM SIGGRAPH ’04 conference proceedings

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists

2

Example

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Goal

Reality

Demo

Map Blast

http://www.mapblast.com/(et2kts453ow4tf55aodhld55)/directionsfind.aspx?&src=MP&strt2=5158%2520Butler%2520St.&city2=Pittsburgh&stnm2=PA&zipc2=15201&cnty2=0
http://www.mapblast.com/(et2kts453ow4tf55aodhld55)/directionsfind.aspx?&src=MP&strt2=5158%2520Butler%2520St.&city2=Pittsburgh&stnm2=PA&zipc2=15201&cnty2=0

Algorithm

(a) false intersections

(b) missing intersections

(c) inconsistent turn direction

(d) overall route shape

original route length angle shape

N/A

N/A

Figure 3: Generalization can cause four types of undesirable effects. Each column

shows the route after generalizing the length, angle, or shape of a single road. For

comparison, the undistorted route is shown in gray. (a) The original route does not

contain an intersection but generalization causes false intersections. (b) The original

route contains an intersection (this usually occurs when one road passes over another

road) but after generalization the intersection is missing. (c) Generalization causes a

right turn to appear as left turn or vice versa. Note that distorting road length cannot

generate an inconsistent turn direction. (d) Generalization causes drastic changes in

overall route shape. This is reflected in substantial changes in the length and direction

of the vector between the route endpoints. Our shape simplification algorithm cannot

cause drastic changes to the overall route shape because it only removes shape points

from each road and never removes the first or last shape point of a road.

1st shape point

ri-1

ri

2nd shape point 3rd shape point 4th shape point final shape

v
1 v

2

v
1 v

2

v
1

v
2

v
1

v
2

v
1
 and v

2
 are in

same half-plane
v

1
 and v

2
 are in

different half-plane

v
1

v
2

FAIL FAIL FAIL PASS

Figure 4: Turn direction consistency check between roads and . We step

through the shape points of , forming two vectors: , between the endpoint of

and the current shape point, and , between the current shape point and the endpoint

of . If and are not in the same half-plane with respect to the coordinate

system oriented along the last segment of the , we mark the current shape point

as unremovable. The test continues until a shape point is not marked as unremovable.

points between each road and the roads and adjacent
to it. We describe the test between and in figure 4. The test
between and is similar.
For most roads we are very aggressive about simplification. We

remove all shape points that are not marked as unremovable by the
previous tests, so most roads are simplified to a single line seg-
ment. For some roads, such as highway on- and off-ramps, depict-
ing more realistic shape can be useful. Knowing whether a ramp
curves around tightly to form a cloverleaf or only bends slightly
can make it easier to enter or exit the highway. Thus, when sim-
plifying ramps we use a more conservative simplification relevance
metric to retain more shape [2].
Some long routes between distant cities require traversing many

highways. Depicting all the short ramps between the highways can
clutter the map with unnecessary detail. Therefore, if the route is
longer than a given threshold we remove all ramps from the map
that can be removed without creating a false or missing intersection
or inconsistent turn direction. Note that all the ramps have been
removed from the map in figure 2(b).

3.2 Formulating Layout As Search

In almost any layout problem there are constraints on how the in-
formation can be laid out, and there are a set of criteria that can be
used to evaluate the quality of the layout. Many such layout prob-
lems can be posed as a search for an optimal layout over a space
of possible layouts. To frame the layout problem as a search we
need to define an initial layout and two functions: a score function
that assesses the quality of a layout based on the evaluation criteria,
and a perturb function that manipulates a given layout to produce a
new layout within the search space. We can then perform simulated
annealing [20] to search for a layout that minimizes the score, as
shown in the following pseudo-code:

procedure SimAnneal()

1 InitializeLayout()
2 ScoreLayout()
3 while(! termination condition)
4 PerturbLayout()
5 ScoreLayout()

6 if (and (Random()))
7 RevertLayout()
9 else
10
11 Decrease()

The simulated annealing algorithm accepts all good moves
within the search space and, with a probability that is an exponen-
tial function of a temperature , accepts some bad moves as well.
As the algorithm progresses, is annealed (or decreased), resulting
in a decreasing probability of accepting bad moves. Accepting bad
moves in this manner allows the algorithm to escape local minima
in the score function.
The difficult aspects of characterizing the layout problem as a

search are designing an efficient score function that captures all of
the desirable features of the optimal layout and defining a perturb
function that covers a significant portion of the search space. As we
discuss the different layout stages of LineDrive, we will focus on
explaining these aspects of our algorithm design.

3.3 Road Layout

The goal of road layout is to determine a length and an orienta-
tion for each road such that all roads are visible and the entire map
image fits within a pre-specified image size. Moreover, the layout
must avoid the problems shown in the second and third columns of
figure 3 and preserve the topology and overall shape of the route.
To generate an initial layout for the search, we first build an axis-

aligned bounding box for the original route and compute a single
factor to scale the entire route to fit within the given image view-
port. Next, we grow all roads that are shorter than a predefined
minimum pixel length, , to be pixels long. Since we
initially scaled all the roads to fit exactly within the bounds of the
image, growing the short roads may extend the map outside the
viewport. We finish the initial layout phase by again scaling the
entire route to fit within the image viewport.
To perturb a road layout during the search, we randomly choose a

road and either scale its length by a random factor between
and , or change its orientation by a random reorientation

angle between degrees. The degree bound on road reorien-
tation is decreased as necessary to ensure that an inconsistent turn
direction is not introduced. After modifying a road, we rescale the
route to fit within the image viewport. By disallowing perturba-
tions that cause inconsistent turn directions and forcing the route to
always fit the viewport, we limit our search space to maps that meet
our turn direction and image size constraints.
All other constraints on road layout are enforced through the

scoring function which examines three aspects of the road layout:
road length and orientation, intersections between roads, and the

Rendering Effective Route Maps: Improving Usability Through Generalization

Maneesh Agrawala Chris Stolte

Stanford University

Figure 1: Three route maps for the same route rendered by (left) a standard computer-mapping system, (middle) a person, and (right) LineDrive, our route map rendering system.

The standard computer-generated map is difficult to use because its large, constant scale factor causes the short roads to vanish and because it is cluttered with extraneous details such

as city names, parks, and roads that are far away from the route. Both the handdrawn map and the LineDrive map exaggerate the lengths of the short roads to ensure their visibility

while maintainaing a simple, clean design that emphasizes the most essential information for following the route. Note that the handdrawn map was created without seeing either the

standard computer-generated map or the LineDrive map. (Handdrawn map courtesy of Mia Trachinger.)

Abstract

Route maps, which depict a path from one location to another, have
emerged as one of the most popular applications on the Web. Cur-
rent computer-generated route maps, however, are often very diffi-
cult to use. In this paper we present a set of cartographic general-
ization techniques specifically designed to improve the usability of
route maps. Our generalization techniques are based both on cogni-
tive psychology research studying how route maps are used and on
an analysis of the generalizations commonly found in handdrawn
route maps. We describe algorithmic implementations of these gen-
eralization techniques within LineDrive, a real-time system for au-
tomatically designing and rendering route maps. Feedback from
over 2200 users indicates that almost all believe LineDrive maps are
preferable to using standard computer-generated route maps alone.

Keywords: Information Visualization, Non-Realistic Rendering, WWW Applica-

tions, Human Factors

1 Introduction

Route maps, which depict a path from one location to another, are
one of the most common forms of graphic communication. Al-
though creating a route map may seem to be a straightforward task,
the underlying design of most route maps is quite complex. Map-
makers use a variety of cartographic generalization techniques in-
cluding distortion, simplification, and abstraction to improve the

(maneesh,cstolte)@graphics.stanford.edu

clarity of the map and to emphasize the most important informa-
tion [16, 21]. This type of generalization, performed either con-
sciously or sub-consciously, is prevalent both in quickly sketched
maps and in professionally designed route maps that appear in print
advertisements, invitations, and subway schedules [25, 13].

Recently, route maps in the form of driving directions have
become widely available through the Web. In contrast to hand-
designed route maps, these computer-generated route maps are of-
ten more precise and contain more information. Yet these maps are
more difficult to use. The main shortcoming of current systems for
automatically generating route maps is that they do not distinguish
between essential and extraneous information, and as a result, can-
not apply the generalizations used in hand-designed maps to em-
phasize the information needed to follow the route.

Figure 1 shows several problems arising from the lack of dif-
ferentiation between necessary and unnecessary information. The
primary problem is that current computer-mapping systems main-
tain a constant scale factor for the entire map. For many routes, the
lengths of roads can vary over several orders of magnitude, from
tens of feet within a neighborhood to hundreds of miles along a
highway. When a constant scale factor is used for these routes, it
forces the shorter roads to shrink to a point and essentially vanish.
This can be particularly problematic near the origin and destination
of the route where many quick turns are often required to enter or
exit a neighborhood. Even though precisely scaled roads might help
navigators judge how far they must travel along a road, it is far more
important that all roads and turning points are visible. Handdrawn
maps make this distinction and exaggerate the lengths of shorter
roads to ensure they are visible.

Another problem with computer-generated maps is that they are
often cluttered with information irrelevant to navigation. This ex-
traneous information, such as the names and locations of cities,
parks, and roads far away from the route, often hides or masks infor-
mation that is essential for following the route. The clutter makes
the maps very difficult to read, especially while driving. Hand-
drawn maps usually include only the most essential information
and are very simple and clean. This can be seen in figure 1(middle)
where even the shape of the roads has been distorted and simpli-
fied to improve the readability of the map. Furthermore, distorting

Outline

• Visualization

• Non-photorealistic Rendering

• Cutaway Illustration

• Contour Drawing

• Good photographs.

• Map Drawing

• Painting

Goal

Example

Impressionist

http://laminadesign.com/explore/impression/04.html
http://laminadesign.com/explore/impression/04.html

Next Class

• Exam Review!

