

Adrien Treuille Carnegie Mellon Universtiy

Project 4 Competition

Top 4 Artifacts get an IPod Touch! Artifact can be movie/image/anything else... (decided by vote of TAs + Graphics Lab)

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Outline

Visualization

- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Visualization

http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

- Goal: Use computer graphics to understand data.
- For virtual every data type there is a corresponding visualization.
 - The importance of graphics!

Numerical Data

http://www.manifold.net/news/fly_through.jpg

Graphs

http://www.wandora.org/wandora/wiki/images/Tree_graph_example.gif

Graphs

http://www.designinginteractions.com/chapters/7

Geographic Data

http://flowingdata.com/wp-content/plugins/yet-another-photoblog/cache/g_econ.6zhzwniskpgcwwgs00okoco4s.7dm680981og04ocskgcsckco4.th.jpeg

Flow Visualization

http://www.faculty.iu-bremen.de/llinsen/publications/ParkYuHotzKreylosLinsenHamann06.jpg

3D Volume Data

http://medvis.vrvis.at/fileadmin/hvr/images/headlarge.jpg

Example

The Biolmage PowerApp

NCRR Center for Bioelectric Field Modeling, Simulation, and Visualization

> Scientific Computing and Imaging (SCI) Institute

> > University of Utah ©2005

- Visualize Large dataset for scientific / medical application.
- Generally do not start with a 3D model.

• A cube of density values.

• Threshold volume data.

• Then run our favorite algorithm....

• Hint: rhymes with "starching dudes"

- Some data better visualized as a volume, not a surface.
- Idea: Use voxels and transparency.

Raytraced Isosurface

Volume Rendering

Volume Rendering Pipeline

- Data volumes come in all types: tissue density (CT), wind speed, pressure, temperature, value of implicit function.
- Data volumes are used as input to a transfer function, which produces a sample volume of colors and opacities as output.
 - Typical might be a 256x256x64 CT scan
- That volume is rendered to produce a final image.

Transfer Functions

- Transform scalar data values to RGBA values
- Apply to every voxel in volume
- Highly application dependent
- Start from data histogram

Transfer Function Example

Scientific Computing and Imaging (SCI) University of Utah

Mantle Convection

Three Options

Ray Casting

Splatting

•3D Textures

Three Options

Ray Casting

Splatting

•3D Textures

Volume Ray Casting

- Ray Casting
 - Integrate color and opacity along the ray
 - Simplest scheme just takes equal steps along ray, sampling opacity and color
 - Grids make it easy to find the next cell

Trilinear Interpolation

- Interpolate to compute RGBA away from grid
- Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation

Nearest neighbor

Trilinear interpolation

Trilinear Interpolation

Bilinear interpolation

Trilinear interpolation

Three Options

Ray Casting

Splatting

•3D Textures

Three Options

Ray Casting

Splatting

•3D Textures

Splatting

- Alternative to ray tracing
- Assign shape to each voxel (e.g., sphere or Gaussian)
- Project onto image plane (splat)
- Draw voxels back-to-front
- Composite (a-blend)

Example

Three Options

Ray Casting

Splatting

•3D Textures

Three Options

Ray Casting

Splatting

•3D Textures

3D Textures

- Alternative to ray tracing, splatting ullet
- Build a 3D texture (including opacity)
- Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware ullet
- Few polygons, much texture memory •

3D RGBA texture

Draw back to front
Three Options

Ray Casting

Splatting

•3D Textures

Three Options

Ray Casting

Splatting

•3D Textures

Surface Rendering

Volume Rendering

Surface Rendering

Volume Rendering

Outline

Visualization

- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Basic Idea

Which best conveys "reality?"

Photograph.

Painting. A Rough Sea at a Jetty, 1650. Jacob van Ruysdael.

Computer Graphics Duncan Brinsmead

source: Jos Stam. Photography changes what we think "reality" looks like.

Reality

A Rough Sea at a Jetty, 1650. - Jacob van Ruysdael.

- This instance in time never happened!
- Perhaps a better match of "subjective reality."
- Better illustration of "what was going on."

NPR Pipeline

• NPR Research often follows this pipeline...

(1) Study Existing Rendering or Illustration Technique

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Goal

Object-aligned box cut

Window Cut

Window Cut

Window cut

Wedge Cut

Wedge Cut

Wedge cut

Transverse Tube Cut

Transverse Tube Cut

Transverse tube cut

Interactive Cutaway Illustrations of Complex 3D Models

Wilmot Li¹ Lincoln Ritter¹ Maneesh Agrawala² Brian Curless¹ David Salesin^{1,3}

¹University of Washington ²University of California, Berkeley ³Adobe Systems

(Source: Li et al. InteractiveCutawayIllustrationsofComplex3DModels)

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Contours

$\mathbf{n}(\mathbf{p})\cdot\mathbf{v}(\mathbf{p})=\mathbf{0}$

min $n(p) \cdot v(p)$

Examples

Suggestive Contours for Conveying Shape

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Problem

Example

Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing
- Painting

Goal

Reality

Map Blast
Algorithm

Rendering Effective Route Maps: Improving Usability Through Generalization

Maneesh Agrawala Chris Stolte

Outline

- Visualization
- Non-photorealistic Rendering
- Cutaway Illustration
- Contour Drawing
- Good photographs.
- Map Drawing

Painting

Goal

A photograph

An abstracted painting

A low detail painting (no interaction)

A high detail painting (no interaction)

Impressionist

• Exam Review!