
15-462 Project 3: OpenGL Shader Programming

Release Date: Friday, February 19, 2010

Due Date: Tuesday, March 16, 2010, 23:59:59

Starter Code: http://www.cs.cmu.edu/afs/cs/academic/class/
15462-s10/www/proj/p3.tar.gz

Useful references:
GLSL Quick Reference Guide: http://www.cs.cmu.edu/afs/cs/academic/
class/15462-s10/www/proj/glslref.pdf
GLSL Full Language Specification: http://www.opengl.org/registry/doc/
GLSLangSpec.Full.1.20.8.pdf
OpenGL Reference Pages: http://www.opengl.org/sdk/docs/man/

1 Overview

In this lab you will learn about shader programming. The lab consists of ren-
dering a scene, similar to previous labs, using OpenGL. However, in this lab
you will render a new effect that requires shader programming. Specifically, you
will render outlines of the objects in the scene, which is done using a multi-pass
rendering method and shaders.

This lab requires a firm understanding of OpenGL textures and the OpenGL
Shader Language (GLSL). The OpenGL Programming Guide and GLSL quick
reference chart are both very useful tools. Additionally, the OpenGL Shading
Language book or “Orange Book” may also be useful (although acquiring a copy
is not necessary to complete this assignment). http://www.lighthouse3d.
com/opengl/glsl/ also has a fairly comprehensive tutorial on shaders.

2 Description

This lab is about rendering outlines, similar to a cartoon drawing. You will
take a standard rendering of a scene using Blinn-Phong shading and add black
outlines around the geometry. Outlines are an example of non-photo-realistic
rendering (NPR). They do not occur in real life, but have uses in graphics in
visualizing things. They can be used to create a cartoony, hand-drawn effect, or
increase clarity in a visualization by highlighting edges of objects. However, the
standard fixed-functionality pipeline cannot support such rendering, so you will
have to take advantage of the programmable hardware features of the GPU.

1

http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/p3.tar.gz
http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/p3.tar.gz
http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/glslref.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/glslref.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://www.opengl.org/sdk/docs/man/
http://www.lighthouse3d.com/opengl/glsl/
http://www.lighthouse3d.com/opengl/glsl/

2.1 Global Rendering

If you remember, OpenGL’s rendering is object-based, meaning the rendering of
a single pixel is independent of surrounding pixels. In fact, OpenGL throws away
all intermediate data for each pixel immediately after rendering. Generating
outlines, however, is an example of global rendering. You need information
about more than one pixel to decide whether to place an outline at a given
pixel.

So how can we accomplish this task with OpenGL? We will use multiple
rendering passes to accomplish the goal. Only the final rendering pass will
produce an output image. The earlier passes all store intermediate data needed
for later passes. The output images of the earlier passes will be used in later
passes as textures.

2.2 Shaders

The fixed-functionality only gives us a few pieces of output data by default,
such as the depth buffer and color buffer. While we’ll need both of these, we
need other intermediate information. Furthermore, fixed-functionality won’t let
us use our intermediate information in the way we need.

So we will have to ditch fixed-functionality and program the GPU hardware
with what are called shaders. Certain stages of the rendering pipeline aren’t ac-
tually fixed and can do much more general operations. Shaders are the programs
that can be run on these stages.

There are 2 shaders you will use. The vertex shader runs once for each
vertex, transforming the attribute data to compute, among other things, the
transformaed position of that vertex. The fragment shader runs once for each
pixel of each primitive, computing the final color of the fragment. It is called
a fragment rather than a pixel since a pixel can have multiple fragments, each
from a different primitive, which can all impact the final pixel color. More
details are in section 7.2.

2.3 Generating Outlines with Shaders

2.3.1 Edge Detection and Outlines

Creating a basic outline is a fairly straightforward process, involving simple edge
detection. Outlines can be computed on any array of pixels, like an image. In
our case, we’ll be computing outlines on a pixel buffer on the video card. But
it works the same for any case.

Edge detection is an example of a convolution filter. We can think of a
convolution filter as a function that operates like a sliding window over the
pixels of an image. For each pixel, we compute its value as linear combination
of the neighboring pixels.

In the case of edge detection, we could break this into two convolutions: one
for horizontal edges and one for vertical edges. To compute the amount of edge
at a given pixel, we take the difference of the neighboring pixels. For horizontal

2

edges, this is the difference between a pixel’s upper and lower neighbors. For
vertical edges, we look at a pixel’s left and right neighbors. The magnitude of
the edge will then be the sum of the magnitudes of the horizontal and vertical
edge values. For example, suppose I is our image, and (j, k) is the index of the
current pixel. Equation 1 would compute the magnitude of the edge at that
pixel.

edgej,k = |Ij+1,k − Ij−1,k| + |Ij,k+1 − Ij,k−1| (1)

Note, however, that there are multiple algorithms for measuring the amount of
edge, and you are not constrained to any one in particular.

To get an outline, we choose a cutoff value, and consider every pixel with an
edge value beyond this cutoff to be part of the outline. We then modify those
pixels in the original image to look like an outline. For example, make them all
solid black.

Convolution filters are easily implemented in a fragment shader, since the
shader runs once for each pixel. It can use textures to look at neighboring pixels
and compute and edge value, and then modify the current pixel if necessary.

2.3.2 Creating the Outline of a Scene

The only remaining question is to decide which buffer on which to do edge
detection. Doing it on the color buffer won’t give us quite the results we want,
since we want to outline the actual objects, not different colors.

The depth buffer makes a good candidate, since the boundaries between
object/background and object/object will have a big difference in the depth,
and one object will only have smooth transitions in depth and thus get no
outline.

But that’s not quite enough. You’d also want an outline, say, at the corner
of a wall, but there is no difference in depth there. What is very different
at those points are the surface normals. So we can compute the difference in
angle between surface normals of each pixel to generate a second outline, and
composite them together.

2.3.3 Implemented as a Shader

This leads to a multi-pass algorithm for generating outlines. You need to pro-
duce 3 different buffers: a color buffer of the actual rendering, the depth buffer,
and a buffer containing the normals. This can be done in one or more rendering
passes using the fixed-functionality and shaders.

Next you have to gather those buffers and store them as textures. There are
many strategies for this; see section 7.5 for suggestions.

You then do a final rendering pass in which a shader uses all of these buffers
to generate an outline and composite the final image. This gets rendered to the
screen.

3

3 Submission Process and Handin Instructions

Failure to follow submission instructions will negatively impact your grade.

1. Your handin directory may be found at
/afs/cs.cmu.edu/academic/class/15462-s10-users/andrewid/p3/.
All your files should be placed here. Please make sure you have a directory
and are able to write to it well before the deadline; we are not responsible
if you wait until 10 minutes before the deadline and run into trouble. Also,
remember that you must run aklog cs.cmu.edu every time you login in
order to read from/write to your submission directory.

2. You should submit all files needed to build your project, as well as any
textures, models, shaders, or screenshots that you used or created. Your
deliverables include:

• src/ folder with all .cpp and .hpp files.
• Makefile and all *.mk files
• writeup.txt

• Any models/textures/shaders needed to run your code.

3. Please do not include:

• The bin/ folder or any .o or .d files.
• Executable files
• Any other binary or intermediate files generated in the build process.

Run make clean before submitting. If you were using Visual Studio, be
sure to clean the solution before submitting.

4. Do not add levels of indirection when submitting. For example, your
makefile should be at .../andrewid/p3/Makefile, not
.../andrewid/p3/myproj/Makefile or .../andrewid/p3/p3.tar.gz.
Please use the same arrangement as the handout.

5. We will enter your handin directory, and run make clean && make, and
it should build correctly. The code must compile and run on the
GHC cluster machines. Be sure to check to make sure you submit all
files and that it builds correctly.

6. The submission folder will be locked at the deadline. There are seperate
folders for late handins, one for each day. For example, if using one late
day, submit to .../andrewid/p3-late1/. These will be locked in turn on
each subsequent late day.

4

Figure 1: Example rendering with outlines. This is not a reference shot, just an
example. Your renderings will differ.

4 Required Tasks

A very general overview of the implementation requirements is as follows. Refer
to subsequent sections of the handout for more details.

Input: We provide you with a function to render a scene, and we proivide an
example shader which is not part of the scene rendering.
Output: You must use a shader to modify this rendering to have black outlines.
There are no specific requirements on how exactly they look, other than they
must be based on a combination of difference in depth and difference in surface
normal. You are also free to choose how exactly edges are measured.
Requirements:

• Your program must work on all scenes we give you, in the scene/ folder.
• Generate an outline based on differences in fragment depth.
• Generate an outline based on differences in surface normal direction.
• Composite these outlines onto the original scene.
• Submit a few screen shots of your program’s renderings.
• Fill out writeup.txt with details on your implementation.
• Use good code style and document well. We will read your code.

5

At a minimum, you must modify project.cpp and project.hpp in the folder
glsl/ and writeup.txt, though you may modify or add additional source files.
writeup.txt should contain a description of your implementation, along with
any information about your submission of which the graders should be aware.
Provide details on which methods and algorithms you used for the various por-
tions of the lab. Essentially, if you think the grader needs to know about it to
understand your code, you should put it in this file. You should also note which
source files you edited and any additional ones you have added.

Examples of things to put in writeup.txt:

• Mention parts of the requirements that you did not implement and why.
• Describe any complicated algorithms used or algorithms that are not de-

scribed in the book/handout.
• Justify any major design decisions you made, such as why you chose a

particular algorithm or method.
• List any extra work you did on top of basic requirements of which the

grader should be aware.

There is also opportunity for up to 10% extra credit by implementing things
above the minimum requirements. See section 8 for more details. Particularly
impressive projects may be eligible to win a prize.

5 Starter Code

It is recommended that you begin by first reviewing the starter code as provided.
Most of it is the same as the previous project. The README gives a breakdown of
each source file. As before, you mainly need to care about glsl/project.hpp
and glsl/project.cpp.

We’ve added a lot of new files this time. Most of these can be ignored.
Almost all the new code involves the scene rendering we provide you. It will
become more important in the raytracing lab, since it is the same scene format
you must render with raytracing. For now, however, you don’t need to bother
reading/editing any of it. Everything you need is declared in project.hpp and
the math/ folder.

There is also an example shader enabled in the starter code by default. It is
not part of the scene rendering, but merely there to provide example code for
creating and using GLSL shaders.

5.1 Building and Running the Code

The code is designed to run and build on the SCS Linux machines and comes
with a makefile. Consult the README for more detailed build and running in-
structions.

We have also provided a Visual Studio 2008 solution, though it will take
a bit of effort to get working since the programs have required command-line
arguments. More details are in the README. If you use Windows, your project

6

still must build and run on GHC Linux machines, so you will still have to test
it on them before submitting. There are some differences in the compilers, so
code that compiles and works with Visual Studio may not compile or
run correctly with GCC. Make sure you test it well before the deadline. Be
sure not to submit Windows binaries, either.

Note that since this project takes advantage of newer GPU technologies, not
all computers will be able to run GLSL shaders or some of the other OpenGL
technologies you may need. Any computer with a dedicated graphics card from
the last 5 years should be fine. All of the Wean and GHC Linux machines are
fine.

Note that subtle driver bugs and differences may cause your shader to not
compile or behave differently on the school machines. Be sure to test on the
school machines.

5.2 What You Need to Implement

project.cpp contains some empty shell functions for you to fill in. At a mini-
mum, you should implement the initialize, destroy, and render functions. Doc-
umentation for each function is in the source file.

Feel free to modify any existing code or add new files, as long as you do not
break the behavior of the program.

6 Grading: Visual Output and Code Style

Your project will be graded both on the visual output (both screenshots and
running the program) and on the code itself. We will read the code.

In this assignment, part of your grade is on the quality of the visuals, in
addition to correctness of the math. So make it look nice. Extra credit may
be awarded for particularly good-looking projects. See section 8 for more extra
credit opportunities.

Part of your grade is dependent on your code style, both how you structure
your code and how readable it is. You should think carefully about how to im-
plement the solution in a clean and complete manner. A correct, well-organized,
and well-thought-out solution is better than a correct one which is not.

We will be looking for correct and clean usage of the C language, such as
making sure memory is freed and many other common pitfalls. These can impact
your grade. Additionally, we will comment on your C++-specific usage, though
we will generally be more lenient with points. More general style and C-specific
style (i.e., rules that apply in both C and C++) will, however, affect your grade.

Since we read the code, please remember that we must be able to understand
what your code is doing. So you should write clearly and document well. If the
grader cannot tell what you are doing, then it is difficult to provide feedback on
your mistakes or assign partial credit. Good documentation is a requirement.

7

7 Implementation Details

7.1 Scene Format

Rather than making you render the scene, we simply provide you with a function
that renders the scene for you. Your algorithm should work independently of
what is drawn in the scene, so you should not need to know the details of the
rendering function.

There is one exception: it necessary to know the near and far planes used
when rendering to convert depth values correctly. Therefore, we provide access
to the camera. However, you do not need to set the transformation matrices
using the camera. This is done for you. You only use the camera to access
values needed for your shaders.

Therefore, you won’t actually be sending any primitives to the GPU, as the
starter code does that for you. You should set up your shader code and use the
function we give you to render the scene, collecting the data you need to create
outlines. You can even call it multiple times.

For convenience, all scenes will be approximately the same size and contain
similarly-size objects, so you should not have to tweak the shaders to get de-
cent results for different scenes. The function we give you will not modify the
OpenGL state; that is, the OpenGL state will be the same after the call as
before.

7.2 More on Shaders

Here’s a bit more detail on shader programming, though you should use other
resources for a more comprehensive description. While programming, the quick-
ref card is an invaluable resource. This is more just some random details that
are important for this lab.

7.2.1 Debugging Shaders

Unfortunately, there are not many good, free solutions for debugging shaders,
particularly on the school machines. You don’t even have print statements to
help you. Therefore, it will take some patience and creativity to figure out what
is wrong with your program. Instead of print statements, you may have to rely
on a lot of test code to help pinpoint which lines of your shader are not working
correctly.1

7.2.2 Variable Modifiers

While local variables are pretty much the same as C, global variables in a shader
have some modifiers that affect how they are used and created. You may recall
that in fixed-functionality, there were two types of variables you can send to the

1One possible trick for fragment shaders is to output and intermediate variable as the final
color, which will give you a visualization of that variable for each pixel. You’ll of course need
to come up with some way of representing your variable as a color.

8

GPU, uniform and attribute. Both these kinds can be used in shaders, along
with a few others:

const These are constants that must be set where declared and cannot be
changed. They are identical in both the vertex and fragment shaders.

uniform These are set by the application and cannot be modified by the
shaders. You declare them in the shader and set them in the C++ pro-
gram using the glUniform family of functions. They must be the same
for an entire primitive. Most of the OpenGL state with which which you
are familiar (e.g., the model-view matrix, material colors, light position)
are actually built-in uniform variables which you do not need declare.
The quick-ref card lists these. Uniforms can be read by both vertex and
fragment shaders.

attribute These are per-vertex data. Like uniforms, the shader declares them
and they are set by the application. Vertex, normal, and texture coordi-
nate are examples of built-in attributes, which are listed on the reference
card. Attributes can only be read by the vertex shader (since they are per-
vertex data). You can also create custom attributes, though you shouldn’t
need any for this lab.

varying These are used to pass intermediate data from the vertex shader to the
fragment shader. They must be set by the vertex shader. The values are
linearly interpolated for each fragment using each vertex in the primitive
and then passed into the fragment shader, where they are read-only.

Note: Be very careful with varying variables. Since they are linearly inter-
polated, they are not suitable to pass certain data. For example, passing a
transformation matrix will almost certainly not work, since the linear combi-
nation of transformation matrices won’t necessarily result in a transformation
similar to the orignal ones.

7.3 OpenGL Extensions

Since newer OpenGL functions aren’t supported on all graphics cards, most
systems don’t actually have header files with all the OpenGL functions in them.
In fact, nearly every function added to OpenGL in the past 10 years in not
available by default on most systems. OpenGL uses an extension mechanism to
gain access to newer functions.

We take care of most of the process for you using an external library call
GLEW. The only thing of which you need to be aware is that most functions in
OpenGL are appended with letters indicating that they are an extension. For
example, nearly all functions associated with shaders are appended with ARB,
e.g., glUniform1fARB instead of glUniform1f. Also, not all graphics cards will
support these features, so your machine may not have them available. The
course staff highly suggests you make sure your video driver is up-to-date to

9

ensure that you have access to all OpenGL functions of which your card is
capable.

7.4 Using Textures in Shaders

As always, consult the OpenGL documentation for more detailed information
about this.

One of the easiest methods for doing an image-based computation with a
shader (e.g. outlines) is using OpenGL textures. You put the image data
into textures. Then, you render a single, screen-sized quad, setting the texture
coordinates such that the texture coordinate at each pixel corresponds to the
matching pixel of the texture. For example:

... // rendering passes that store data in textures

... // bind textures and set shader

... // set projection and modelview to identity

// this assumes you’re using GL_TEXTURE_RECTANGLE_ARB
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f);
glVertex2f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(width, 0.0f);
glVertex2f(1.0f, -1.0f, -1.0f);
glTexCoord2f(width, height);
glVertex2f(1.0f, 1.0f, -1.0f);
glTexCoord2f(0.0f, height);
glVertex3f(-1.0f, 1.0f, -1.0f);
glEnd();

You set the vertex shader to pass on the texture coordinate, which will be
interpolated for the fragment shader. Then you can use the fragment shader to
do per-pixel computation, looking at any neighboring pixels you wish.

7.4.1 Texture Rectangle

While using normal 2D textures is possible, there are limitations. For most
GPUs, 2D texture dimensions must be a power of 2,2 which doesn’t exactly
match the screen size. So OpenGL has a texture rectangle extension, which lets
you create textures of any size, say w pixels in width and h pixels in height. The
texture coordinates then run from (0, 0) to (w, h) rather than (0, 0) to (1, 1),

2This isn’t really true on newer cards; only older cards require it. However, even on some
new cards, non-power-of-two-sized textures are much slower, to the point of unusability. Best
to play it safe.

10

which makes it more natural and precise to lookup exact pixels. We suggest
you use GL TEXTURE RECTANGLE rather than GL TEXTURE 2D.3

7.4.2 Samplers and Active Texture

OpenGL actually allows several textures to be bound simultaneously. There
is the idea of an “active texture,” which, like everything else, is part of the
state. Active texture slots are enumerated from 0 up, usually to around 8.
glBindTexture binds to the current active texture slot. The active texture can
be changed with glActiveTexture. This will come in handy when you need to
pass multiple textures to your shader simultaneously.

Textures may only be passed to shaders in a very specific way. A 2d texture
handle has type sampler2D (sampler2DRect for texture rectangle). A sampler
must be a uniform variable, so it must be set by the application. In the shader,
use the texture* family of functions to do texture lookups.

When setting the sampler using glUniform, you do not use the OpenGL
texture handle received from glGenTextures. Instead, you use the value of the
active texture to which the texture is bound. For example:

... // some declarations and initialization
// set active texture to slot 0
glActiveTexture(GL_TEXTURE0);
// bind to slot 0
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, tex_handle_a);
// set active texture to slot 1
glActiveTexture(GL_TEXTURE1);
// bind to slot 1
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, tex_handle_b);
// set uniform to tex_handle_a
glUniform1iARB(texture_a_loc, 0);
// set uniform to tex_handle_b
glUniform1iARB(texture_b_loc, 1);

7.5 Rendering a Buffer to a Texture

In order to use the results of a previous rendering pass, you must create a
texture whose data is the buffer of the first rendering pass. OpenGL provides
several methods to do this of varying complexity and performance. Any should
be suitable for this assignment as long as it can run in real time.4

The simplest method is to use glReadPixels and similar functions to read
the buffer directly into CPU memory. Then you can load this data into a texture
the same way one would create a texture from image data, using glTexImage2d.
This is both the easiest to get working and the most well-supported by GPUs.

3Though most of the docs don’t mention this, you can use glTexImage2d for texture rect-
angles. Just pass GL TEXTURE RECTANGLE as the first argument, instead of GL TEXTURE 2D.

4“Real time” roughly means at least 15 FPS, when compiled with optimizations. Remem-
ber that you need to build with make MODE=release to build with optimiztions.

11

A more efficient and newer method involves Framebuffer Objects. A Frame-
buffer Object (FBO) is essentially a handle to buffer on the GPU to which
rendering occurs. OpenGL provides the function glFramebufferTexture2D to
bind a texture to an FBO, and thus the results of the render pass go directly
into texture memory. This method, while certainly much faster, is somewhat
more complicated and not supported on older GPUs. Note that this is an ex-
tension, and most functions will be appended with EXT. Consult the Red Book
and online resources for more information.

Other methods exist, but these are the 2 recommended ones. The first is by
far the simplest, while second is much faster yet still relatively simple. But you
may use others if you wish.

7.6 Storing Information in Buffers

Most of the buffers and textures in OpenGL clamp values to be floats in the
range [0, 1] by default. This is true of both the depth buffer and color buffers.
So you have to be a bit creative about storing data in them.

7.6.1 The Depth Buffer

The depth buffer will be filled automatically by the fixed-functionality rendering.
So all you have to do is get the depth buffer into a texture and use it. The depth
buffer has its own special format that differs from a typical color buffer. You
will need to use the GL DEPTH COMPONENT format for the texture. For FBOs, the
buffer attachment is GL DEPTH ATTACHMENT.

The depth buffer stores the z value with which the pixel was rendered.
OpenGL will take care of converting z values into the depth buffer, but your
shader will need to convert it back. This conversion depends on the near and
far planes; the far plane maps to a depth value of 1.0, and the near plane maps
to a value of 0.0. Equation 2 shows how to convert from the depth buffer value,
d, to the original distance, z, where n is the near plane distance and f is the
far plane distance.

z =
nf

f − d(f − n)
(2)

7.6.2 The Normal Buffer

Since the fixed-functionality discards the normals, you’ll have to write a shader
to store the normals in the color buffer, which will then be used as a texture in
the next rendering pass.

A normal is only 3 values, so we can fit it into a normal 4-byte color buffer,
where each component gets one byte. For normals, each component is in the
range [−1, 1], so you’ll have to make a simple bijection to squeeze them into
[0, 1] on the first rendering pass and then extract the original normal on the
second.

Note that not every pixel will have a normal (e.g. areas with background
color). Since we give you the rendering function, you don’t get to pick the

12

background color, but that shouldn’t be a big issue, since all background pixels
should map to the same normal, and background edges will be covered by the
depth outlines anyway.

7.7 Suggested Sequence

We suggest you implement the assignment in the following order:

1. Have a look at the example shader we provide to see how they work. You
can then just remove this shader, or modify it to become your own shader.

2. Remove the shader and render the scene using fixed-functionality (we give
you this).

3. Render the color buffer and its depth buffer to textures.
4. Write a shader to render the color buffer texture in a second pass without

modifying it. So you’ll get the same output as if rendered without any
shaders.

5. Modify the shader to add outlines based on the depth buffer texture.
6. Write another shader to copy the normals into a third buffer. This may

require rendering the scene using fixed-functionality twice.
7. Modify the original shader to compute outlines based on normals as well.

8 Extra Credit

Any improvements, optimizations, or extra features for the project above the
minimum requirements can be cause for extra credit, up to 10%. Particularly
impressive projects may be eligible to win a prize. Extra credit is generally
awarded for impressive achievements beyond the project requirements, at the
discretion of the graders.

Ideas may include but are not limited to:

• Have outlines change thickness depending on distance from the camera.

• Make a smooth transition from line to no-line instead of a sharp cutoff.

• Make the outlines smooth by implementing some kind of anti-aliasing.

• Write additional shaders to do interesting effects to the scene.
Warning: This does not mean copying some shader you find online and
fiddling with it a little. We will only accept original, interesting shaders.
So no basic stuff like toon shading; it has to be pretty impressive.

• Create additional, interesting scenes (even adding new kinds of geometry).

• Add animation and create an animated scene.

13

9 Words of Advice

9.1 General Advice

• As always, start early. This lab takes more time than previous ones.

• Make sure you have a firm understanding of textures before starting work.

• Familiarize yourself with the rendering pipeline and where vertex and
fragment shaders fit in.

• Have a look at some example shaders to see how they operate.

• Particularly since you don’t have a good debugger, start with very simple
shaders. Add new features iteratively, testing at each step. This will help
you find shader bugs more quickly and painlessly.

• Be careful with memory allocation, as too many or too frequent heap
allocations will severely degrade performance.

• Make sure you have a submission directory that you can write to as soon
as possible. Notify course staff if this is not the case.

• While C has many pitfalls, C++ introduces even more wonderful ways to
shoot yourself in the foot. It is generally wise to stay away from as many
features as possible, and make sure you fully understand the features you
do use.

14

	Overview
	Description
	Global Rendering
	Shaders
	Generating Outlines with Shaders
	Edge Detection and Outlines
	Creating the Outline of a Scene
	Implemented as a Shader

	Submission Process and Handin Instructions
	Required Tasks
	Starter Code
	Building and Running the Code
	What You Need to Implement

	Grading: Visual Output and Code Style
	Implementation Details
	Scene Format
	More on Shaders
	Debugging Shaders
	Variable Modifiers

	OpenGL Extensions
	Using Textures in Shaders
	Texture Rectangle
	Samplers and Active Texture

	Rendering a Buffer to a Texture
	Storing Information in Buffers
	The Depth Buffer
	The Normal Buffer

	Suggested Sequence

	Extra Credit
	Words of Advice
	General Advice

