15-462 Project 4: Raytracing

Release Date: Friday, March 19, 2010
Due Date: Thursday, April 8, 2010, 23:59:59

Starter Code: http://www.cs.cmu.edu/afs/cs/academic/class/
156462-s10/www/proj/p4.tar.gz

1 Overview

In the first three projects, you learned how to use OpenGL to render simple
scenes. For this project, we will be moving away from OpenGL (huzzah!) and
asking you to implement a basic ray tracer that can handle shadows, reflections
and refractions. All rendering will be done with software, only using OpenGL
to display the final image to the screen (and we provide that part for you). So
you don’t need to touch any OpenGL.

As a warning, this assignment is far more code intensive than the previous.
However, it should be more straightforward since there is not any OpenGL
involved and since the textbook is a very excellent resource for this topic. Even
so, start early. Do not wait until the last week to start. There is a lot of code
and debugging can take a fairly long time.

Chapter 10 of the Shirley textbook will be the most useful resource for this
assignment, so we strongly recommend that you look at it before starting this
assignment. Nearly all topics covered in this handout are also covered in the
textbook (though sometimes we present slightly different mathematics). Any
references to the Shirley text, unless noted otherwise, are in chapter 10.

2 Submission Process and Handin Instructions
Failure to follow submission instructions will negatively impact your grade.

1. Your handin directory may be found at
/afs/cs.cmu.edu/academic/class/15462-s10-users/andrewid/p4/.
All your files should be placed here. Please make sure you have a directory
and are able to write to it well before the deadline; we are not responsible
if you wait until 10 minutes before the deadline and run into trouble. Also,
remember that you must run aklog cs.cmu.edu every time you login in
order to read from/write to your submission directory.


http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/p4.tar.gz
http://www.cs.cmu.edu/afs/cs/academic/class/15462-s10/www/proj/p4.tar.gz

2. You should submit all files needed to build your project, as well as any
textures, models, shaders, or screenshots that you used or created. Your
deliverables include:

src/ folder with all .cpp and .hpp files.

Makefile and all *.mk files

writeup.txt

Any models/textures/shaders needed to run your code.

3. Please do not include:

e The bin/ folder or any .o or .d files.
e Executable files
e Any other binary or intermediate files generated in the build process.

Run make clean before submitting. If you were using Visual Studio, be
sure to clean the solution before submitting.

4. Do not add levels of indirection when submitting. For example, your
makefile should be at . ../andrewid/p4/Makefile, not
.../ andrewid/p4/myproj/Makefile or .../andrewid/p4/p4.tar.gz.
Please use the same arrangement as the handout.

5. We will enter your handin directory, and run make clean && make, and
it should build correctly. The code must compile and run on the
GHC cluster machines. Be sure to check to make sure you submit all
files and that it builds correctly.

6. The submission folder will be locked at the deadline. There are seperate
folders for late handins, one for each day. For example, if using one late
day, submit to . ../andrewid/p4-latel/. These will be locked in turn on
each subsequent late day.

3 Required Tasks

A very general overview of the implementation requirements is as follows. Refer
to subsequent sections of the handout for more details.

Input: We provide you with several scenes make up of various geometries,
a loader, and an OpenGL renderer that approximates the lighting of the scene.
We also provide code to move the camera and save screenshots.

Output: Your must produce an image created by raytracing the scene by
implementing the Raytracer: :raytrace function to its in-code specification.

Requirements:

e Implement the Raytracer class as defined by the spec to raytrace scenes.



e Write intersection tests for all types of geometric objects in the scene.
e Properly handle arbitrary scaling, rotation, and translation of geometries.
Implement the basic ray tracing algorithm by sending a ray from the eye
through all objects in the scene, up to a recursion depth of at least 3.

Add direct illumination and shadows by sending rays to point lights.
Add specular reflections by sending reflected rays into the scene.

Add refractions by sending transmission rays through dielectric materials.
Compute colors as specified in section 10.

Correctly render all provided scenes.

Submit a few screen shots of your program’s renderings, from various
camera view-points.

e Fill out writeup.txt with details on your implementation.

e Use good code style and document well. We will read your code.

At a minimum, you must modify project.cpp and project.hpp in the
folder raytracer/ and writeup.txt, though you may modify or add additional
source files. writeup.txt should contain a description of your implementation,
along with any information about your submission of which the graders should
be aware. Provide details on which methods and algorithms you used for the
various portions of the lab. Essentially, if you think the grader needs to know
about it to understand your code, you should put it in this file. You should also
note which source files you edited and any additional ones you have added.

Examples of things to put in writeup.txt:

e Mention parts of the requirements that you did not implement and why.

e Describe any complicated algorithms used or algorithms that are not de-
scribed in the book/handout.

e Justify any major design decisions you made, such as why you chose a
particular algorithm or method.

e List any extra work you did on top of basic requirements of which the
grader should be aware.

There is also opportunity for up to 10% extra credit by implementing things
above the minimum requirements. See section 11 for details.

We provide you with reference renderings for each scene we give you. These
renderings were taken from the default camera view. As such, at least a few
of your screenshots must be taken from different angles than the reference shots.

Note: The writeup and/or handout may be updated during the course of the
project. You are responsible for monitoring the bboard, where notice of such
updates will be posted. It is suggested you often grab the newest copy of the
writeup, as minor writeup fixes will likely not be announced.



4 Starter Code

It is recommended that you begin by first reviewing the starter code as provided.
Most of it is the same as the previous project. However, in this project you’ll
have to look at a lot more of it, particularly the files that define the structure
of the scene. The README gives a breakdown of each source file.

4.1 Building and Running the Code

The code is designed to run and build on the SCS Linux machines and comes
with a makefile. Consult the README for more detailed build and running in-
structions.

We have also provided a Visual Studio 2008 solution, though it will take
a bit of effort to get working since the programs have required command-line
arguments. More details are in the README. If you use Windows, your project
still must build and run on GHC Linux machines, so you will still have to test
it on them before submitting. There are some differences in the compilers, so
code that compiles and works with Visual Studio may not compile or
run correctly with GCC. Make sure you test it well before the deadline. Be
sure not to submit Windows binaries, either.

4.2 What You Need to Implement

The code that you are required to implement is located in raytracer.cpp.
The specification for each function is in the source file, and relevant types are
generally in the corresponding header file. You may additionally edit any other
source files in the handout, though you must keep the basic program behavior
the same. To add additional source files, edit the lists in sources.mk.

The starter code provides an implementation of Raytracer: :raytrace that
iterates over each pixel of the screen. For each pixel, it invokes an empty
function, Raytracer: :trace_pixel, which you should implement to compute
the color of that pixel. If you wish, you can change the implementation of
Raytracer: :raytrace, as long as it meets the described specification.

4.3 Scene Files

Scenes are described in an XML format. All scenes that you must support are
in the scenes/ folder. We encourage you to create your own, as well.

5 Grading: Visual Output and Code Style

Your project will be graded both on the visual output (both screenshots and
running the program) and on the code itself. We will read the code.

In this assignment, part of your grade is on the quality of the visuals, in
addition to correctness of the math. So make it look nice. Extra credit may be



awarded for particularly good-looking projects. See section 11 for more extra
credit opportunities.

Part of your grade is dependent on your code style, both how you structure
your code and how readable it is. You should think carefully about how to im-
plement the solution in a clean and complete manner. A correct, well-organized,
and well-thought-out solution is better than a correct one which is not.

We will be looking for correct and clean usage of the C language, such as
making sure memory is freed and many other common pitfalls. These can impact
your grade. Additionally, we will comment on your C+--specific usage, though
we will generally be more lenient with points. More general style and C-specific
style (i.e., rules that apply in both C and C++) will, however, affect your grade.

Since we read the code, please remember that we must be able to understand
what your code is doing. So you should write clearly and document well. If the
grader cannot tell what you are doing, then it is difficult to provide feedback on
your mistakes or assign partial credit. Good documentation is a requirement.

6 Scene Layout

In this section we describe how the scene that you must raytrace is repre-
sented and all of its components. Consult the corresponding header files (in
the src/scene/ folder) for even more detail.

6.1 Scene

A scene is composed of several parts:

Geometries
Lights

Materials

Meshes
Background color

S Gt e

Refractive index of air

6.2 Materials

Materials define all the properties of a surface, including the ambient, diffuse,
specular colors, the texture, and the refractive index of the material. The starter
code we give you loads the texture into memory for you, but you have to do
the texture sampling yourself. Objects share materials in order to share texture
data.

A refractive index of 0 is a special case to mean the object is opaque. The
interpretation of the colors depends on if the object is opaque or not. Consult
section 10 for details.

In the provided scenes, multiple geometries that are part of the same overall
solid (e.g., a tetrahedron made from triangles) will all have the same refractive



index. However, they can (and will) vary the other material properties across
the solid. Again, see section 10 on color computation.

6.3 Geometries

There is a base geometry class that contains the position, orientation, and scale
to be used as the transformation for that geometry.
The transformations should be applied in the following order:

1. Scaling
2. Rotation
3. Translation

Each specific kind of geometry is represented as a subclass, in its own
header/source file pair.

Sphere A perfect sphere. Becomes an ellipsoid if scaled.

Triangle A triangle, with a different material for each vertex. See section 10.1.2
for more information.

Model Very similar to what you saw in the first project. Each model contains
a pointer to a mesh in the list of meshes. Each mesh is made up of
a set of triangles. Models can share the same mesh but have different
transformations and materials.

Note that we suggest using virtual functions to accomplish tasks on different
kinds of geometries without the need for casting or switch statements, much as
you would in a language like Java. Most of the operations you need to do that
depend on the type of geometry can be easily expressed as a function of the base
Geometry class, such as intersection tests. There is already a virtual function,
Geometry: :render, as an example. As with all C++ idioms, you can consult
the TAs for help.

6.4 Other Stuff

There are two different kinds of lights: an ambient light term and a list of point
lights. Ambient light applies to all opaque objects, and point lights are used
for computing direct illumination and shadows. Each point light consists of a
position, a color, and a set of attenuation factors. These attenuation factors
behave the same as in OpenGL. See section 10.2.2 for more details.

The background color is to be used anywhere a ray goes off to infinity. You
can replace this with some kind of environment map (e.g. skydome or skybox)
for extra credit.

The refractive index of air simply specifies the initial refractive index at the
camera’s location. Your raytracer may assume that the camera is always in air.



7 Ray Casting and Intersection Tests

7.1 Ray Casting

The primary ability needed by the ray tracer is the ray cast function, which
sends out a given ray p(t) = e + dt into the scene and returns the first object
intersected by the ray and the time at which the intersection occurs. This basic
function will be used by all other parts of the ray tracer to perform such tasks as
casting eye rays, shadow rays, reflected rays, and transmission rays. Note that
you also have to deal with bounds on the ray. For example, when sending out
eye rays, you should only consider intersections that occur within the viewing
frustum.

7.2 Intersection Tests

You must write intersection tests for each of the objects. You may wish to write
this code in conjunction with the basic ray tracing algorithm outlined in the
next section so that you can test your intersection tests along the way. Consult
the Shirley text for sphere-ray and triangle-ray intersection tests.

7.2.1 Model-Ray Intersection

The simplest method for a mesh is to perform an intersect test on every triangle
in the mesh and return the one with the minimum time (if such an intersection
exists). Of course, this can be prohibitively slow, and so it would be much better
to have a sub-linear method that involved some kind of spatial optimization.
Optimization is not required for this assignment, but you may find it useful to
consider.!

7.3 Instancing

In addition to handling intersections of simple spheres, triangles, and models,
you are required to to handle arbitrary rotations, translations, and scaling of
these geometries. This requires a bit of care, since an ellipsoid-ray intersection
test is much harder than a sphere-ray intersection. So we want to perform
intersection tests in the object’s local space rather than world space. Details
are in the textbook, but the basic process is as follows. For each intersection
test with a ray and object:

1. Acquire the transformation matrix M and its inverse M 1.

2. Transform the ray by M ! to put it in the object’s local space.

3. Do the intersection test in the local space using this new ray. The result
is the time of intersection.

4. Use M, the object, and the time of intersection to compute the location
of intersection in world space.

INote that the scenes with complex models will take much longer to render than those
with just triangles and/or spheres. So don’t be surprised by this.



You must handle arbitrary affine transformations for all of the geometries in
the assignment. For more details on this, you can refer to section 10.8 of the
Shirley text.

Note: Transforming normals into world space from local space requires
a special “normal matrix,” which is different than the regular transformation
matrix. Specifically, if M is the transformation matrix, (M ~1)7 is the corre-
sponding normal matrix. We provide some routines to help you with this, in
math/matrix.hpp. However, when there is scaling, the vectors obtained by mul-
tiplying by the normal matrix are no longer unit length. Therefore, you must
re-normalize after multiplying by the normal matrix if there was scaling.?

8 Basic Ray Tracing and Eye Rays

Consult the shirley text for more deatail on these items.

8.1 The Ray Tracing Function

Now that you have methods to intersect objects, you can use these methods to
begin building the basic ray tracing algorithm. We use our ray casting function
to create the basic recursive ray tracing function that, given a ray p(t) = e + dt,
returns the color of that ray. This will be used by eye rays, reflected rays, and
transmission rays.

Basically, the ray trace function invokes ray cast to determine if an object
is hit within the time bounds. If so, it computes the color on the object at that
point. Otherwise, it returns the color of the background.

8.2 Eye Rays

You can use the ray tracing function to create the basics of your ray tracer. The
idea is simple: for every pixel on the screen, you will want to compute the “eye
ray” coming out of that pixel and cast it into the scene. If a ray intersects an
object, you will want to return the color of the pixel at that point of intersection.

At first, you probably want to make a very simple color computation. For
example, return some constant color for objects and another for background.
Of course, the actual computation is much more involved (see section 10), but
this will allow you to test your eye rays.

9 Computing the Recursive Rays

The basic ray tracing algorithm you will have written so far simply returns the
color of the first object that it intersects. If your intersection tests are correct,

2For the curious, this is the reason you need GL_NORMALIZE enabled with OpenGL when you
have scaling. When enabled OpenGL re-normalizes normals after multiplying by the normal
matrix.



then your code should currently return a scene with no shading and only flat
colors.

The next step is to compute the color correctly. However, this requires your
ray tracer to be able to correctly send out the remaining 3 types of rays: shadow,
reflected, and transmission.

Note that all of these are covered extensively in Shirley, with full derivations
for the math involved. You should consult the text for more detail.

9.1 Using the Ray Cast Function

Each of the recursive rays will also use the ray cast functionality. However,
unlike eye rays, which are fired from the camera, all of these rays are fired from
the point of intersection p with an object in the scene. This point is given to
us by the eye ray’s intersection tests, and so all we need to do is compute the
direction of the new recursive ray.

9.1.1 Recursion Depth

Two of these rays will be used in recursive calls to your ray tracing function.
However, this leaves open the possibility for infinite recursion, as rays bounce
and refract around the scene forever. The ray tracer must be stopped some-
where. You want this to happen once the contribution has become small, so it
is not noticeable.

There are a few ways to accomplish this, but one simple way is to simply
cap the maximum recursion depth of the ray tracer. Once the max depth is
reached, reflection and refraction are not considered. We require your ray tracer
to support up to at least a depth of 3, though you may use a more sophisticated
method.

9.1.2 Slop Factor

The other major issue with recursive ray tracing is the fact that the ray’s origin
is on the surface of a geometry. This means that the intersection test will likely
return ¢ = 0, since the ray is colliding with an object at time O.

One easy way to correct for this is to introduce a slop factor € > 0 as the
minimum time bound, to prevent the collision with the ray origin from occurring.
€ should be a very small positive number.

9.2 Shadow Rays

Shadow rays are rays that are cast from the intersection point to a light source to
determine the visibility of that light source. When computing direct illumination
(see section 10.2.2), one must determine whether a light source is even visible
from the intersection point. For this we can simply use our ray cast function to
determine if there is another object in the way. If a shadow ray hits any object,
then there is no contribution from that light.



Note: This actually breaks down in the face of refraction, since a transpar-
ent object doesn’t actually block light rays from reaching a point. It in fact can
concentrate them more, resulting in effects like caustics. For this project, you
can simply ignore this fact when casting a shadow ray. That is, you may have
transparent objects cast complete shadows.

9.3 Reflected Rays

Computing reflected rays is straightforward. We take the incoming ray, bounce
it off the normal, and invoke the ray tracer on this reflected ray.

9.4 Transmission Rays

Certain materials allow the transport of light through them. These materials are
known as dielectrics and allow for the refraction of light. In our scene, dielectrics
are represented using the Material::refraction_index attribute. We use 0
as a special case for opaque objects, and any non-zero value to represent the
refraction index of that material.

We utilize Snell’s Law to compute the angle of a refractive ray. Consult the
Shirley text for a full derivation.

9.4.1 Tracking the Current Refraction Index

Tracing a scene with dielectrics can be a bit tricky since we must track the
current refraction index so we know which values to put into the equation. We
assume that the ray trace starts in the scene’s background refraction index,
which is given by the Scene class. From there, any time you enter a dielectric,
the current index changes. Once you leave, the index goes back to what it was
before.

We suggest using a small stack to track this information. You can determine
whether you’re entering or leaving a dielectric based on the direction of the nor-
mal vector. The normal points out, so if the dot product of the normal and the
incoming ray is negative, the ray is entering. Otherwise, the ray is exiting. Be
careful, since rays can reflect in between refractions (via total internal reflection,
etc.).

One other small issue to consider is that of floating point error. It may be
the case that your ray casting, for reasons caused by errors inherent in floating
point computation or the slop factors, missed an entrance/exit from a dielectric.
This can cause your stack to become corrupt/invalid. It may be impossible to
avoid this, so your best bet is to have code to handle the case where the stack
becomes invalid, even if it means the color won’t be completely correct. Your
raytracer should not crash or fail to halt on any inputs.

10



10 Computing the Color

Once we have determined when and where an intersection occurs, we must
compute the color at that point. Your code must utilize the recursive ray tracing
calls as described in section 9.

Note that all equations in the section dealing with colors are done on a
component-wise basis. That is, you compute the red, green, and blue individu-
ally. The Color3 class overloads the multiplication operation to be component-
wise, so you should be able to do this for all 3 components simultaneously.

10.1 Computing the Needed Values

First you must determine a few things at the point p. Of chief interest are
the material, the normal N, the texture coordinates (u,v), the viewing ray V,
and each light ray L. V and L can be easily computed. The others may be
computable directly (as in the case of a sphere), but may need to be interpolated.

10.1.1 Spheres

The normal and texture coordinates are directly computable on a sphere. The
normal is obvious, pointing directly away from the center. For texture coordi-
nates, we wrap a sphere using the latitude and longitude lines as the basis of
texture coordinates. That is, one texture component corresponds to the lati-
tude, and the other corresponds to the longitude. You may consult the OpenGL
rendering code in the starter code to see exactly how these texture coordinates
correspond to position. The Shirley text also has details.

10.1.2 Interpolation

For triangles, the way to compute the values at a given point is by interpolation.
This requires the barycentric coordinates «, 3, computed in the intersection
test. To get the value of a vector, color, or float at any given point p = aa, 8b, yc
where a, b, ¢ are the vertices of the triangle, we simply interpolate the value. So,
for example, to compute the diffuse color k4 at p, where ¢; is the diffuse color
at vertex i, we have

kq = acq + Bep + yee.

This computation works identically for all vectors, floats, or colors. So we can
interpolate the normal, the texture coordinates, and every value of the material.

Note, the Triangle class has a different material on each vertex, and so
you must interpolate all the values of the material to get the correct effect.
This includes textures, which must actually be done with two interpolations.
First, the texture coordinates are interpolated. Then, the texture from each
material must be sampled at those coordinates. Finally, these texture colors
must themselves be interpolated.

For the Model class, you only need to interpolate normals and texture coor-
dinates, not materials.

11



10.2 The Three Components

We require that your ray tracer support direct illumination, specular reflection,
and refraction. Note that the color computations vary based on the type of
object. In our simple model, we support only fully opaque objects and fully
transparent objects. In the former, only direct illumination and specular reflec-
tion contribute to the color. In the latter, only specular reflection and refraction
contribute to the color. The exact ways in which these are computed and com-
bined are described in this section.

10.2.1 Texture Color

First we need the texture color, ¢,, at our point. We provide you with textures
loaded into arrays and a function to return the color of a specific pixel. You
must first write a texture lookup function based on these, which should behave
similarly to OpenGL texture lookups.? Nearest sampling is sufficient, though
better sampling can be grounds for extra credit. You must also provide the
texture coordinates, whose computation is described in 10.1.

10.2.2 Direct Illumination

Your ray tracer should support the basic Blinn-Phong illumination model for its
direct illumination that we have been using for the past two projects. However,
we do not need to use the Phong specular component since we have a more ac-
curate specular computation. Therefore, direct illumination consists of ambient
and diffuse colors.

Ambient, as always, is the ambient color of light, ¢,, multiplied by the
material’s ambient color, k,. The color ¢, is given by Scene: :ambient_light.

Diffuse is computed for each light ¢ in the set of lights . We multiply the
color of the light at the point p, which we’ll call ¢;, by the diffuse material kgy
and the dot product of the normal N and the light vector L. However, we must
first use a shadow ray to determine whether the light actually contributes at
that point. If the shadow ray hits an object between the point and the light,
then there is no contribution from that light.

Lights also have attenuation, so the color ¢; isn’t exactly the color of the
light. There are 3 attenuation terms: constant, a.; linear, a;; and quadratic, a,.
The color ¢; of the light with color ¢ at distance d from the light is

c

“= ac + da; + d?a,

This is also one place where the object’s texture comes into play. The entire
direct illumination component should be multiplied by the texture color at that
point, ¢,.

3That is, (0,0) is the bottom-left corner of the texture, (1,1) is the top-right.

12



So, all together, the color at a point p is

cp =1 (caka + Z bicikgmax{N - L, 0}) .

iel

where b; is 0 if the shadow ray from p to i intersects an object, 1 otherwise.

10.2.3 Reflection and Refraction

The color contributions from specular reflection and refraction are from recursive
calls to the ray trace function. Using the computed reflection/transmission rays,
you compute the color of that ray.

In the case of reflection, you must multiply the returned color by the ma-
terial’s specular color, which is given by Material: :specular, and also by the
texture color t,.

In the case of refraction, you may assume the light has no attenuation
through the dielectric, and so the color is unchanged.*

10.3 Putting It All Together

For opaque surfaces, we simply sum the two components. You compute the
direct illumination and specular terms, then sum them to get the final color.
The story is a little more complex for dielectrics.

10.3.1 The Fresnel Effect

For dielectrics, we must consider the Fresnel equations, which describe how
much light reflects and how much refracts on a given surface. We will actually
use an approximation, called the Schlick approximation.

The Schlick approximation of the Fresnel effect is described on page 214
of Shirley. You should compute the Fresnel coefficient R. Given that and the
values of specular reflection ¢, and refraction cy, the final color is

¢p = Rey + (1 — R)ey.

Note: if there was no refraction component (due to total internal reflection),
then just use R = 1.

11 Extra Credit

Any improvements/optimizations to the ray tracer above the minimum require-
ments can be cause for extra credit. Note that no matter what you do, your
raytracer must correctly support all given scenes, exactly as they are. Therefore,

4For extra credit, have a look at Beer’s Law in the text, which discusses how light actually
attenuates through dielectrics.

13



you may need to edit some of the application code so your extra stuff doesn’t
run unless something additional is defined at the command line.
Some possibilities are:
e Make your ray tracer distributed by adding any number of the following:
— Anti-aliasing
Soft shadows
Depth of field
Glossy reflection
Motion blur (requires an animated scene, see below)

e Add some sort of data structure for optimizations. The Shirley text pro-
vides some ideas for bounding volumes and spatial data structures. If
you are considering spatial data structures, you may wish to look at loose
octrees.

e Add something extra to handle global illumination, such as photon map-
ping to create caustics.

e Ray trace your own geometry by writing an intersect test for it and build-
ing a scene demonstrating it. You do not need to add it to the loader
unless you really want to. Instead, you can just hard-code in a few scenes
and add some command-line flag or something to use them.

e Change the background of your scene by using an environment map (e.g.
skydome or skybox) Again, you can hard code this if you don’t want to
edit the loader, and just add some kind of flag.

e Modify a scene to be an animation by updating geometries each frame and
implementing some kind of physical simulation. This can be very simple
or rather complex.

e Make the scene interactive with the mouse in some way.

e Add more sophisticated materials and effects such as subsurface scattering.

e Create additional, interesting scenes to show off your new features. These
may be hard-coded (activated by flag) if you like.

12 Words of Advice

12.1 General Advice

Writing a ray tracer is a substantial undertaking, which is why we have allotted
you a substantial amount for this project. There is a lot of code to write, a
lot of math to think through, and a lot of time needed to render your scenes,
so you will not want to wait until the deadline is close to start. This project
is also more substantial than the previous assignments in that there are many
design decisions to make about your implementation, and how you choose to
the structure your code can have effects on the efficiency of your final result.

The Shirley text is a very valuable resource for raytracing, and we heavily
suggest you start by reading all relevant sections of the text and consulting the
text during the course of the assignment.

14



Rendering scenes with your raytracer is expensive, and can take anywhere
from seconds to hours depending on your implementation and the scene com-
plexity. You will want to set aside at least a day or two just for rendering. Note
that the since the program can be launched without OpenGL initialization, it
is possible to create renderings on a remote machine via ssh.

12.2 Programming Hints

Since raytracing takes a lot of time, paying attention to writing efficient code is
important. Of course, efficiency is most certainly not the most important consid-
eration. Correctness, maintainability and good code organization are your most
important concerns. However, you should avoid writing obviously unnecessarily
slow code. Here are a few hints:

Avoid recomputing values than can be cached and use many times. For
example, you can precompute matrices for geometries’ transformations
and inverse transformations once before you start raytracing, rather than
for every ray cast.

Do not allocate memory in performance sensitive areas. Memory alloca-
tion is really, really slow. Do any necessarily allocations in an initialization
step, or, even better, use the stack or add members to already-allocated
structs or classes to avoid additional allocations at all.

Avoid trigonometric and square root functions when you can do without
them, as they are rather expensive. Note that a lot of vector opera-
tions such as normalization, magnitude, and distance use square root, so
use squared magnitude and squared distance where possible, and avoid
normalizing vectors unnecessarily. Of course, a lot of algorithms require
unit-length vectors, so only avoid it when possible.

Avoid virtual functions if a non-virtual function will suffice, since virtual
functions are more expensive to call. Note that this does not mean to use
switch statements or casting instead of virtual functions, but rather, don’t
make a function virtual if you can leave it non-virtual.

Some more general programming hints:

Orientations are stored as quaternions, with which you may be unfamiliar.
Basically, they store a 3D rotation in a compact format. If you’d rather
just work with matrices instead, the quaternion class has a function to
convert it to a rotation matrix.

Different parts of the raytracer require a lot of the same functionality,
which means you can have a lot of code reuse. We highly suggest that
you carefully consider how to organize the code to reduce code repetition.
Remember that part of your grade is dependent on code organization.

15



e Don’t be afraid to edit the starter code we give you to keep it modular and
organized. We highly suggest, for example, adding functions and members
to the Geometry class (or at least the same source file) for functions closely
related to geometries.

e We provide a lot of useful starter code for you, so you don’t have to bother
writing a lot of basic routines. Take a look at the headers, for if you need
some basic vector or matrix operation, it is likely already there.

o If you use Windows to implement the project, be sure to test on the Linux
machines. The compilers are not quite the same, and certain things that
compile with MSVC do not compile or behave differently with GCC.

16



	Overview
	Submission Process and Handin Instructions
	Required Tasks
	Starter Code
	Building and Running the Code
	What You Need to Implement
	Scene Files

	Grading: Visual Output and Code Style
	Scene Layout
	Scene
	Materials
	Geometries
	Other Stuff

	Ray Casting and Intersection Tests
	Ray Casting
	Intersection Tests
	Model-Ray Intersection

	Instancing

	Basic Ray Tracing and Eye Rays
	The Ray Tracing Function
	Eye Rays

	Computing the Recursive Rays
	Using the Ray Cast Function
	Recursion Depth
	Slop Factor

	Shadow Rays
	Reflected Rays
	Transmission Rays
	Tracking the Current Refraction Index


	Computing the Color
	Computing the Needed Values
	Spheres
	Interpolation

	The Three Components
	Texture Color
	Direct Illumination
	Reflection and Refraction

	Putting It All Together
	The Fresnel Effect


	Extra Credit
	Words of Advice
	General Advice
	Programming Hints


