12. Data Structures for Graphic,S

ing for Volume Visug,.
‘ : 99). A structure similar to the triangle nej.
lxscg‘ssed n a technica] report by Charleg Loop (Loop, 2000). A li
nanifolds can be found in an jntroduct()ry topology text (M‘unk:z*

1a scene graph for g bicycle.

ny look-up tableg are needed for g single-leve] tiling of g4,
nal array? "
triangles, what is the minimum number of triangles that could pe
a resulting BSP tree? What is the maximum number?

More Ray Tracing

A ray tracer is a great substrate on which to build all kinds of advar?ced rendering
effects. Many effects that take significant work to fit into the object-order ras-
terization framework, including basics like the shadows and reﬂeC‘tiOHS already
presented in Chapter 4, are simple and elegant in a ray tracer. In tI.‘us chap.ter we
discuss some fancier techniques that can be used to ray-trace a wider variety of
scenes and to include a wider variety of effects. Some extensions allow more gen-
eral geometry: instancing and constructive solid geometry (CSG) are two ways
to make models more complex with minimal complexity added to the program.
Other extensions add to the range of materials we can handle:' refraction tf?rollgh
transparent materials, like glass and water, and glossy reflections on a variety of
surfaces are essential for realism in many scenes.

This chapter also discusses the general framework of distr. f'b”{i‘m e f”fw'
ing (Cook et al., 1984), a powerful extension to the basic ray-tracing idea 1“_ which
multiple random rays are sent through each pixel in an image to produ(,je images
with smooth edges and to simply and elegantly (if slowly) produce a wide range
of effects from soft shadows to camera depth-of-field. .

The price of the elegance of ray tracing is exacted in terms of computer H.me-‘
most of these extensions will trace a very large number of rays for any non-trivial
Scene. Because of this, it’s crucial to use the methods described in Chapter 12 to
accelerate the tracing of rays.

303

If you start with a brute-
force ray intersection loop,
you'll have ample time to
implement an acceleration
structure while you wait for
images to render.

Example values of n:
air: 1.00;

water: 1.33-1.34;
window glass: 1.51;

optical glass: 1.49-1.92;

diamond: 2.42.

304 13. More Ray Trag,,

13.1 Transparency and Refraction

In Chapter 4 we discussed the use of recursive ray tracing to compute specyly,
or mirror, reflection from surfaces. Another type of specular object is a djgje,.
tric—a transparent material that refracts light. Diamonds, glass, water, and air gy,
dielectrics. Dielectrics also filter light; some glass filters out more red and by,
light than green light, so the glass takes on a green tint. When a ray travels frop,
a medium with refractive index n into one with a refractive index 7, some of the
light is transmitted, and it bends. This is shown for n; > n in Figure 13.1. Sne]J
law tells us that
nsinf = ny sin @.

Computing the sine of an angle between two vectors is usually not as convenien
as computing the cosine, which is a simple dot product for the unit vectors such
as we have here. Using the trigonometric identity sin® § + cos? @ = 1, we can
derive a refraction relationship for cosines:

n? (1 — cos®6)

cosip=1- 5
i
Note that if 7 and n; are reversed, then so are § and ¢ as shown on the right of
Figure 13.1.

To convert sin ¢ and cos ¢ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of the surface normal, n, and the ray direction, d.

From Figure 13.2, we can see that n and b form an orthonormal basis for the
plane of refraction. By definition, we can describe the direction of the transformed

s CTrhieg IS Mol d

Figure 13.1. Snells Law describes how the angle ¢ depends on the angle ¢ and the
refractive indices of the object and the surrounding medium.

13. More Ray -
k!

parency and Refraction

scussed the use of recursive ray tracing to c

1 from surfaces. Another type of specular Ty

rrllaterllal that refracts light. Diamonds, glass, v "Ji::tzlrls

rics also fi Lofits s L ar

pleres fjglltgslifg, some glass ﬁlters out more red apq bl

otive indexﬁ - s on a. green tint. When a ray travel ¢ ug
. one with a refractive index n,, $ from

and 1 3 - S0me of
it bends. This is shown for n; > n in P 13 ;Ilcsui the
2-1. Snelg

SPeculy
4 d';eit‘('.

1d ajr are

nsinf = n, sin ¢

of an an i
o hgl; between two vectors is usually not as cop
, which i i T

s hisa simple dot product for the unit ve o
sing the trigonometric identity sin? o
e . entity sin“ @ + cos? 0 = |
slationship for cosines: TR

2
n? (1 — cos?0)

2
n;

coslp=1—

t evers d, h 1 SO are 6 and 05 das Sho lght
are VEISe the wn on thel QO

and ¢ i

th o;, @ into a 3D vector, we can set up a 2D orthonorm;

: ¢ surtace normal, n, and the ray direction, d ™

!, we can i

e see that n and b form an orthonormal basis for the
n, we can describe the direction of the transformed

NS e A]

o/
r t

“

=
I

4

aw describes how the an
bject and the surrounding r%tdﬁjrgepends 0 the angle:f e ie

d

3.1. Transparency and Refraction 305

i s of this basis:
1y t, in term
= gin ¢b — cos ¢,

ince we can describe d in the same basis, and d is known, we can solve for b:

S
d = sin b — cosfn,

B d+ncosf
~ 7 sinf

This means that we can solve for t with known variables:

e n(d +mncost))

Tt

—ncos®

:n(d~7r11t(d-n)) . 14n2(14n(%d-n)2).

Note that this equation works regardless of which of n and n; is larger. An im-
mediate question is, «“What should you do if the number under the square root is

In this case, there is no refracted ray and all of the energy is reflected.

negative?”
ble for much of the

This is known as total internal reflection, and it is responsi
sich appearance of glass objects.

The reflectivity of a dielectri
Fresnel equations. A nice way to implement some
tions is to use the Schlick approximation (Schlick, 1994a),

¢ varies with the incident angle according to the
thing close to the Fresnel equa-

5
)

R(6) = Ro+ (1 — Ro) (1 — cosf)

where Ry is the reflectance at normal incidence:

2
e — il
Ry = .
0 (ni + 1)
Note that the cos) terms above are always for the
internal and external angles relative to the normal).
For homogeneous impurities, as is found in typica

carrying ray’s intensity will be attenuate
travels through the medium it loses intensity

the RGB attenuation constant a,

unit of distance. Putting in boundary conditions, we know that I(0) = Io, and

angle in air (the larger of the

1 colored glass, a light-
d according to Beer’s Law. As the ray
according to dI = —(C1 dz, where
de is distance. Thus, dI/dz = —CI. We can solve this equation and get the

exponential] = kexp(—Cx) + k'. The degree of attenuation is described by
which is the amount of attenuation after one

Figure 13.2. The vectors
n and b form a 2D orthonor-
mal basis that is parallel to
the transmission vector t.

306 13. MOI’E Ray Traf":rr.

I

Figure 13.3. The color of the glass is affected by total internal reflection and Beer's Law,
The amount of light transmitted and reflected is determined by the Fresnel equations. The
complex lighting on the ground plane was computed using particle tracing as described in
Chapter 24. (See also Plate 1V.)

I(1) = al(0). The former implies I(z) = I, exp(—Cxz). The latter implies
fpa = I exp(—C), so —C = In(a). Thus, the final formula is

I{s) = I{Q)en(a)e

where I(s) is the intensity of the beam at distance s from the interface. In practice,
we reverse-engineer a by eye, because such data is rarely easy to find. The effect
of Beer’s Law can be seen in Figure 13.3, where the glass takes on a green tint.
To add transparent materials to our code, we need a way to determine when
a ray is going “into” an object. The simplest way to do this is to assume that all
objects are embedded in air with refractive index very close to 1.0, and that surface
normals point “out” (toward the air). The code segment for rays and dielectrics
with these assumptions is:
if (p is on a dielectric) then
r =reflect(d, n)
if (d-n < 0) then
refract(d, n, n, t)
c=—d-n
kr = k‘g = kb =1

13. More Ray Tracing

ol ; '

traﬂrsﬁfié';fj %'f}lgs lsf affected by total internal reflection and Beer

Mg planere lected is determined by the Fresnel equations LT‘?: '
was co i ; : .

o Plate IV.) mputed using particle tracing as described iﬁ

)he former implies I(z) = I exp(—Ctz). The latter implies
,80 —C = In(a). Thus, the final formula is k

I(s) = I(O)e‘—ln(a}s,

tensity of the beam at distance s from the interface In practic

T a by eye, because such data is rarely easy to ﬁnc-i Tfflje effi e;
be seen in Figure 13.3, where the glass takes on a éreen tintec
'int mat.erials to our code, we need a way to determine wh;sn
" an o‘bjec.:t. The simplest way to do this is to assume that all
ed in air with refractive index very close to 1.0, and that surface

? t s
051 :::ftrd the air). The code segment for rays and dielectrics

ctric) then

1)
‘hen
n,t)

:bzl

43.2. Instancing 307

else
kr = exp(#art)
ke = exp(—agt)

by = exp(—ast)
if refract(d, —n, 1 /n, t) then
e=t-n
else
return k * color(p + tr)
Ro=(n—1?/(n+1)?
R=Ro+(1—Ro)(1—¢)
return k(R color(p + tr) + (1 — R) color(p + tt))

The code above assumes that the natural log has been folded into the constants
(ar,ag,ﬂb)- The refract function returns false if there is total internal re-
flection, and otherwise it fills in the last argument of the argument

list.

13.2 Instancing

An elegant property of ray tracing is that it allows very natural instancing. The
basic idea of instancing is to distort all points on an object by a transformation
matrix before the object is displayed. For example, if we transform the unit circle
(in 2D) by a scale factor (2,1) in z and y, respectively, then rotate it by 45°, and
move one unit in the z-direction, the result is an ellipse with an eccentricity of
2 and a long axis along the (z = —y)-direction centered at (0, 1) (Figure 13.4).
The key thing that makes that entity an “instance” is that we store the circle and
the composite transform matrix. Thus, the explicit construction of the ellipse is
Jeft as a future operation at render time.

The advantage of instancing in ray tracing is that we can choose the space in
which to do intersection. If the base object is composed of a set of points, one of
which is p, then the transformed object is composed of that set of points trans-
formed by matrix M, where the example point is transformed to Mp. If we have
aray a +tb that we want to intersect with the transformed object, we can instead
intersect an inverse-transformed ray with the untransformed object (Figure 13.3).
Thf:re are two potential advantages to computing in the untransformed space (ie.
the right-hand side of Figure 13.5):

1. the untransformed object may have a simpler intersection routine, e.g., a
sphere versus an ellipsoid;

y
X
1.scale
2. rotate 3. move
Figure 13.4. An instance

of a circle with a series of
three transforms is an el-

lipse.

308 13. More Ray T

;rdclﬂg
/4
points Mp on circle =, |
|
Mq I
/ e \
/ ; |
/ rayM'a + FM"?//M'% !
4 i
/ M2 points p on circlei
b

raya + tb f

|

Figure 13.5. The ray intersection problem in the two Spaces are just simple transforms of
each other. The object is specified as a sphere plus matrix M. The ray is specified in the
transformed (world) space by location a and direction b.

2. many transformed objects can share the same untransformed object thys
reducing storage, e.g., a traffic jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 6.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 13.5, we can
determine the intersection of a ray and an object transformed by matrix M. If we
create an instance class of type surface, we need to create a hif
function:

instance::hit(ray a + tb, real to, real ¢y, hit-record rec)
rayr' = M a4+ tM~!p
if (base—objcct—»hit(r’, to, t1, rec)) then
recn = (M YTrecn
return true
else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either space. Also note that we need not
compute or store the matrix M,

13. More Ray T[‘acmg

points Mp on circle

rayM'a + tM'b

-1 &
M'a points p ¢n circle

ra + tb

The ray intersection problem in the two spaces are just simple transforms of
e object is specified as a sphere plus matrix M. The ray is specified in the
arld) space by location a and direction b.

ransformed objects can share the same untransformed object thus
g storage, e.g., a traffic jam of cars, where individual cars are just
‘ms of a few base (untransformed) models.

sed in Section 6.2.2, surface normal vectors transform differently.
mind and using the concepts illustrated in Figure 13.5, we can
intersection of a ray and an object transformed by matrix M. If we
istance class of type surface, we need to create a hit

t(ray a + tb, real g, real ¢, hit-record rec)
“la+tMb

ect—hit(r’, to, t1, rec)) then
‘M~ ") Trec.n

ue

se

ng about this function is that the parameter rec.t does not need to
ecause it is the same in either space. Also note that we need not
re the matrix M.

13.3. Constructive Solid Geometry 200

This brings up a very important point: the ray direction b must not be re-
stricted t0 2 unit-length vector, or none of the infrastructure above works. For this
reason, it is useful not to restrict ray directions to unit vectors.

13.3 Constructive Solid Geometry

One nice thing about ray tracing is that any geometric primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to add constructive solid geometry (CSG) to a ray
tracer (Roth, 1982). The basic idea of CSG is to use set operations to combine
solid shapes. These basic operations are shown in Figure 13.6. The operations
can be viewed as set operations. For example, we can consider C' the set of all
points in the circle and S the set of all points in the square. The intersection
operation C' N § is the set of all points that are both members of C and S. The
other operations are analogous.

Although one can do CSG directly on the model, if all that is desired is an
image, we do not need to explicitly change the model. Instead, we perform the set
operations directly on the rays as they interact with a model. To make this natural,
we find all the intersections of a ray with a model rather than just the closest. For
example, a ray a + tb might hit a sphere at £ = 1 and ¢ = 2. In the context
of CSG, we think of this as the ray being inside the sphere for ¢t € [1,2]. We
can compute these “inside intervals” for all of the surfaces and do set operations
on those intervals (recall Section 2.1.2). This is illustrated in Figure 13.7, where
the hit intervals are processed to indicate that there are two intervals inside the
difference object. The first hit for ¢ > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals.
When the first hitpoint is determined, the material property and surface normal is
that associated with the hitpoint. In addition, you must pay attention to precision
issues because there is nothing to prevent the user from taking two objects that
abut and taking an intersection. This can be made robust by eliminating any
interval whose thickness is below a certain tolerance.

13.4 Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated using distribution ray tracing (Cook et al., 1984) . The conventionally
ray-traced images look clean, because everything is crisp; the shadows are per-

(Cus
(union)
i S-C
(difference)
(difference)

D CnS
(intersection)

Figure 13.6. The ba-
sic CSG operations on a 2D
circle and square.

(8]
=0 " T =T
S,
t=0 L
___&-8
Do o t=1

Figure 13.7. Intervals are
processed to indicate how
the ray hits the composite
object.

Figure 13.8. Sixteen reg-
ular samples for a single
pixel.

Figure 13.9. A simple
scene rendered with one
sample per pixel (lower left
half) and nine samples per
pixel (upper right half).

Figure 13.10. Sixteen ran-
dom samples for a single
pixel.

310 13. More Ray Tracing

fectly sharp, the reflections have no fuzziness, and everything is in perfect focyg
Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter 24), .
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way 1,
antialias (recall Section 8.3) the image. '

13.4.1 Antialiasing

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the trye
average. If the screen coordinates bounding the pixel are [i,7 + 1] x 7,7 + 1],
then we can replace the loop: '

for each pixel (4, j) do
cij = ray-color(i + 0.5, 7 + 0.5)

with code that samples on a regular n x n grid of samples within each pixel:

for each pixel (7, j) do
a=4
forp=0ton—1do
forg=0ton—1do
¢ = c+ray-color(i + (p + 0.5)/n, j + (g + 0.5)/n)
e =il

This is usually called regular sampling. The 16 sample locations in a pixel for
= 4 are shown in Figure 13.8. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel at n,n by nyn
resolution and then averaging blocks of n by n pixels to get a ny by n, image.
One potential problem with taking samples in a regular pattern within a pixel
is that regular artifacts such as moiré patterns can arise. These artifacts can be
turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 13.10. This is usually called random sampling and involves just
a small change to the cade:

18. More Ray Tracing

he reflections have no fuzziness, and everything is in perfect f

> would like to have the shadows be soft (as they are in real ﬁtbocu;
fuzzy as with brushed metal, and the image have variable de r:}; th§
)h(-)tograph with a large aperture. While accomplishing thesf tLIL.Sm‘
u_‘;ples is somewhat involved (as is developed in Chapter 24)1 ings
f the visual impact with some fairly simple changes to the bas; We
hm. In addition, the framework gives us a relatively simple WL ray

1l Section 8.3) the image. ay to

aliasing

?lmple way to antialias an image is to compute the average col
“the pixel rather than the color at the center point. In ray traci :r
onal primitive is to compute the color at a point on the screen n?i
any of these points across the pixel, we are approximating the t.ru
: screen coordinates bounding the pixel are [i,7 + 1] x [,5 + 1e
place the loop: ’ :

el (,7) do
-color(i 4 0.5, + 0.5)

samples on a regular n x n grid of samples within each pixel:

el (i,7) do

ton —1do
‘0ton —1do

:2+ ray-color(i + (p + 0.5)/n, 7 + (g + 0.5)/n)

callfed regular sampling. The 16 sample locations in a pixel for
swn in Figure 13.8. Note that this produces the same answer as
litional ray-traced image with one sample per pixel at n,n by nyn
then averaging blocks of n by n pixels to get a n, by n, image.y
ial problem with taking samples in a regular pattern within a pixel
artifacts such as moiré patterns can arise. These artifacts can be
ise by taking samples in a random pattern within each pixel as

e 13.10. This is usually called random sampling and involves just
to the code:

13.4. Distribution Ray Tracing N

jor each pixel (i, j) do
c=0
forp = 1 [0?12 do
¢ = c+ ray-color(i + &, 7 + §)

Cij = c/ﬂz
fere £ is a call that returns a uniform random number in the range [0, 1). Unfor-
wnately, the noise can be quite objectionable unless many samples are taken. A
compromise is to make a hybrid strategy that randomly perturbs a regular grid:

for each pixel (,7) do
c=0
forp=0ton — 1do
forg=0ton —1do
¢ = ¢+ ray-color(i + (p + €)/n, j + (g + €)/n)
Cij = c/n2

That method is usually called jittering or stratified sampling (Figure 13.11).

13.4.2 Soft Shadows

The reason shadows are hard to handle in standard ray tracing is that lights are
infinitesimal points or directions and are thus either visible or invisible. In real
life, lights have non-zero area and can thus be partially visible. This idea is shown
in 2D in Figure 13.12. The region where the light is entirely invisible is called
the umbra. The partially visible region is called the penumbra. There is not a
commonly used term for the region not in shadow, but it is sometimes called the
anti-umbra.

The key to implementing soft shadows is to somehow account for the light
being an area rather than a point. An easy way to do this is to approximate the
light with a distributed set of N point lights each with one Nth of the intensity
of the base light. This concept is illustrated at the left of Figure 13.13 where nine
lights are used. You can do this in a standard ray tracer, and it is a common trick
to get soft shadows in an off-the-shelf renderer. There are two potential problems
with this technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the program a great deal. The second
problem is that the shadows have sharp transitions inside the penumbra.

Distribution ray tracing introduces a small change in the shadowing code.
Instead of representing the area light at a discrete number of point sources, we
represent it as an infinite number and choose one at random for each viewing ray.

Figure 13.11. Sixteen
stratified (jittered) samples
for a single pixel shown with
and without the bins high-
lighted. There is exactly
one random sample taken
within each bin.

light

object
p/ umbra [X

N\

intensity on ground plane

Figure 13.12. A
soft shadow has a gradual
transition from the unshad-
owed to shadowed region.
The transition zone is the
“penumbra” denoted by p in
the figure.

Figure 13.14. The geom-
etry of a parallelogram light
specified by a corner point
and two edge vectors.

3 13. More Ray Tracing

Figure 13.13. Left: an area light can be approximated by some number of point lights; fo,
of the nine points are visible to p so it is in the penumbra. Right: a random point on the ligy
is chosen for the shadow ray, and it has some chance of hitting the light or not.

This amounts to choosing a random point on the light for any surface point being
lit as is shown at the right of Figure 13.13. “

If the light is a parallelogram specified by a corner point ¢ and two edge
vectors a and b (Figure 13.14), then choosing a random point r is straightforward:

r=c+&a+ &b,

where £, and & are uniform random numbers in the range [0, 1).

We then send a shadow ray to this point as shown at the right in Figure 13.13.
Note that the direction of this ray is not unit length, which may require some
modification to your basic ray tracer depending upon its assumptions.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always have the
ray in the upper left-hand corner of the pixel generate a shadow ray to the upper
left-hand corner of the light. Instead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered, but so
that there is no correlation between pixel samples and light samples. A good way
to accomplish this is to generate two distinct sets of n? jittered samples and pass
samples into the light source routine:

for each pixel (i, j) do
c=0
generate N = n? jittered 2D points and store in array 1[]
generate N = n? jittered 2D points and store in array s|]
shuffle the points in array s[]
forp=0to N —1do
¢ = ¢ + ray-color(i + r[p].x(), 7 + r[p].y(), s[p])
Cij = (’/;V

]

Sl = S e R €]

[t

13. More Ray Tracing

ﬁ@%t /)

. Left: an area light can be approximated by some number of point lights; four
iints are visible to p so it is in the penumbra. Right: a random point on the light
the shadow ray, and it has some chance of hitting the light or not.

ts to choosing a random point on the light for any surface point being
vn at the right of Figure 13.13.

ght is a parallelogram specified by a corner point ¢ and two edge
d b (Figure 13.14), then choosing a random point r is straightforward:

r=c+&a+ &b,

d &2 are uniform random numbers in the range [0, 1).

send a shadow ray to this point as shown at the right in Figure 13.13.
ie direction of this ray is not unit length, which may require some
1to your basic ray tracer depending upon its assumptions.

d really like to jitter points on the light. However, it can be dangerous
it this without some thought. We would not want to always have the
»per left-hand corner of the pixel generate a shadow ray to the upper
rner of the light. Instead we would like to scramble the samples, such
!l samples and the light samples are each themselves jittered, but so
no correlation between pixel samples and light samples. A good way
sh this is to generate two distinct sets of n? jittered samples and pass
' the light source routine:

ixel (4, 7) do
e N = n? jittered 2D points and store in array 1[]

e N = n? jittered 2D points and store in array s |
the points in array s[]

OtoN —1do
: + ray-color(i + rfp].x(), 7 + r[p].y(), s[p])
/N

13.4. Distribution Ray Tracing 313

This shuffle routine eliminates any coherence between arrays r and s. The s:hadow
coutine will just use the 2D random point stored in s[p] rather than calling the
random number generator. A shuffle routine for an array indexed from 0 to N —1
is:
fori = N — 1 downto 1 do
choose random integer j between 0 and 7 inclusive
swap array elements 7 and j

13.4.3 Depth of Field

The soft focus effects seen in most photos can be simulated by collecting light at
a non-zero size “lens” rather than at a point. This is called depth of field. The
lens collects light from a cone of directions that has its apex at a distance where
everything is in focus (Figure 13.15). We can place the “window” we are sampling
on the plane where everything is in focus (rather than at the z = n plane as we did
previously) and the lens at the eye. The distance to the plane where everything is
in focus we call the focus plane, and the distance to it is set by the user, just as the
distance to the focus plane in a real camera is set by the user or range finder.

Figure 13.16. An example of depth of field. The caustic in the shadow of the wine glass is
computed using particle tracing as described in Chapter 24. (See also Plate V.)

lens

focus
plane

Figure 13.15. The lens
averages over a cone of
directions that hit the pixel
location being sampled.

Figure 13.17. To create
depth-of-field effects, the
eye is randomly selected
from a square region.

Figure 13.18. The re-
flection ray is perturbed to
a random vector r’.

—p

314 13. More Ray ‘|_-“<a-:ing

To be most faithful to a real camera, we should make the lens a disk. Howevey.
we will get very similar effects with a square lens (Figure 13.17). So we choose
the side-length of the lens and take random samples on it. The origin of (he
view rays will be these perturbed positions rather than the eye position. Again, 4
shuffling routine is used to prevent correlation with the pixel sample positions. Ay
example using 25 samples per pixel and a large disk lens is shown in Figure [3.1¢

13.4.4 Glossy Reflection

Some surfaces, such as brushed metal, are somewhere between an ideal mirror
and a diffuse surface. Some discernible image is visible in the reflection but i
is blurred. We can simulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 13.18.

Only two details need to be worked out: how to choose the vector v’ and what
to do when the resulting perturbed ray is below the surface from which the ray is
reflected. The latter detail is usually settled by returning a zero color when the
ray is below the surface.

To choose r’, we again sample a random square. This square is perpendicular
to r and has width a which controls the degree of blur. We can set up the square’s
orientation by creating an orthonormal basis with w = r using the techniques in
Section 2.4.6. Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points (£,£') € [0,1]?, then the
analogous point on the desired square is

a
©=——+£a,
L 5 t&a,

a

=—=4fa.
v 5 £'a

Because the square over which we will perturb is parallel to both the u and v
vectors, the ray r’ is just
r' =r+uu+ovv.

Note that r’ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

13.4.5 Motion Blur

We can add a blurred appearance to objects as shown in Figure 13.19. This is
called motion blur and is the result of the image being formed over a non-zero

e

13. More Ray Tracing

st faithful to a real camera, we should make the lens a disk. However.
ery similar effects with a square lens (Figure 13.17). So we chooge
th of the lens and take random samples on it. The origin of the
1 be these perturbed positions rather than the eye position. Agaip, 4
ine is used to prevent correlation with the pixel sample positions. Ay
g 25 samples per pixel and a large disk lens is shown in Figure 13.]¢,

ssy Reflection

:s, such as brushed metal, are somewhere between an ideal mirrgr
surface. Some discernible image is visible in the reflection but it
e can simulate this by randomly perturbing ideal specular reflection
1in Figure 13.18.
details need to be worked out: how to choose the vector r’ and what
ie resulting perturbed ray is below the surface from which the ray is
e latter detail is usually settled by returning a zero color when the
he surface.
v/, we again sample a random square. This square is perpendicular
vidth a which controls the degree of blur. We can set up the square’s
7 creating an orthonormal basis with w = r using the techniques in
. Then, we create a random point in the 2D square with side length
the origin. If we have 2D sample points (£, &’) € [0, 1]2, then the
int on the desired square is

a
U—*§+£G,
v:—%+§’a.

square over which we will perturb is parallel to both the u and v
ty r’ is just

r' =r+uu+ov.
i not necessarily a unit vector and should be normalized if your code
‘or ray directions.

ion Blur

| blurred appearance to objects as shown in Figure 13.19. This is
blur and is the result of the image being formed over a non-zero

13.4. Distribution Ray Tracing 315

Figure 13.19. The bottom right sphere is in motion, and a blurred appearance results.
Image courtesy Chad Barb.

span of time. In a real camera, the aperture is open for some time interval during
which objects move. We can simulate the open aperture by setting a time variable
ranging from Ty to T4. For each viewing ray we choose a random time,

T=Ty+&(Ty — Ta).

We may also need to create some objects to move with time. For example, we
might have a moving sphere whose center travels from ¢y to ¢; during the interval.
Given T', we could compute the actual center and do a ray—intersection with that
sphere. Because each ray is sent at a different time, each will encounter the sphere
at a different position, and the final appearance will be blurred. Note that the
bounding box for the moving sphere should bound its entire path so an efficiency
Structure can be built for the whole time interval (Glassner, 1988).

316 13 More Ray TraCir‘_r-

Notes

There are many, many other advanced methods that can be implemented iy the
ray-tracing framework. Some resources for further information are Glassner's An
Introduction to Ray Tracing and Principles of Digital Image Synthesis, Shirley:,
Realistic Ray Tracing, and Pharr and Humphreys’s Physically Based Renderjy,.
From Theory to Implementation. h

Frequently Asked Questions

e What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), unj.
form subdivision grids, and bounding volume hierarchies. Most people who use
BSP trees make the splitting planes axis-aligned, and such trees are usually calleg
k-d trees. There is no clear-cut answer for which is best, but all are much, much
better than brute-force search in practice. If I were to implement only one, it
would be the bounding volume hierarchy because of its simplicity and robustness,

e Why do people use bounding boxes rather than spheres or ellipsoids?
Sometimes spheres or ellipsoids are better. However, many models have polyg-

onal elements that are tightly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.

	ch13-303
	ch13-304
	ch13-305
	ch13-306
	ch13-307
	ch13-308
	ch13-309
	ch13-310
	ch13-311
	ch13-312
	ch13-313
	ch13-314
	ch13-315
	ch13-316

