
Computer Graphics
CMU 15-462/15-662, Spring 2016

Lecture 10:

Curves, Surfaces & Meshes

 CMU 15-462/662, Spring 2016

Assignment 2 is out!

2

 CMU 15-462/662, Spring 2016

Last time: overview of geometry
Many types of geometry in nature

Demand sophisticated representations

Two major categories:

- IMPLICIT - “tests” if a point is in shape

- EXPLICIT - directly “lists” points

Lots of representations for both

Today:

- subdivision curves and surfaces (explicit)

- what is a surface, anyway?

- nuts & bolts of polygon meshes

- geometry processing / resampling

3

Geometry

 CMU 15-462/662, Spring 2016

Subdivision (Explicit)
Alternative starting point for B-spline curves: subdivision
Start with control curve
Insert new vertex at each edge midpoint
Update vertex positions according to fixed rule
For careful choice of averaging rule, yields smooth curve
- Average with “next” neighbor (Chaikin): quadratic B-

spline

4Slide cribbed from Don Fussell.

 CMU 15-462/662, Spring 2016

Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”)

Subdivide each element

Update vertices via local averaging
Many possible rule:

- Catmull-Clark (quads)

- Loop (triangles)

- ...

Common issues:

- interpolating or approximating?

- continuity at vertices?

Easier than NURBS for modeling; harder to guarantee continuity

5

 CMU 15-462/662, Spring 2016

Subdivision in Action (Pixar’s “Geri’s Game”)

6

 CMU 15-462/662, Spring 2016

Q: What is a “surface?”

7

 CMU 15-462/662, Spring 2016

A: Oh, it’s a 2-dimensional manifold.

8

 CMU 15-462/662, Spring 2016

Q: Ok... but what the heck is a manifold?

9

 CMU 15-462/662, Spring 2016

The Earth looks flat, if you get close enough

10

Can pretend we’re on a grid:

 CMU 15-462/662, Spring 2016

The Earth looks flat, if you get close enough

11

Can pretend we’re on a grid:

Much harder to describe!

 CMU 15-462/662, Spring 2016

A smooth manifold also looks flat close up

12

 CMU 15-462/662, Spring 2016

Not all curves are smooth manifolds

13

No matter how close we get, doesn’t look like a single line!

 CMU 15-462/662, Spring 2016

What about sharp corners?

14

Can easily be flattened into a line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6
 7

 8
 9 10 11 12 13

Can still assign coordinates (just like Manhattan!)

...But is it a manifold?

15

YES

YES NO

NO

NO

“A subset S of Rm is an n-manifold if every point p in S is
contained in a neighborhood that can be mapped
bijectively and continuously (both ways) to the open ball in
Rn.”
In other words: each little piece can be made flat without
“ripping or poking holes.”

 CMU 15-462/662, Spring 2016

Definition of a manifold

u

v

 CMU 15-462/662, Spring 2016

Why is the manifold property valuable?
Makes life simple: all surfaces look the same (at least
locally).
Gives us coordinates! (At least locally.)

16

More abstractly, lets us talk about curved surfaces in terms of
familiar tools: vector calculus & linear algebra.

 CMU 15-462/662, Spring 2016

Isn’t every shape manifold?
No, for instance:

17

No way to put a (simple) coordinate system on the center point!

 CMU 15-462/662, Spring 2016

What about discrete surfaces?
Surfaces made of, e.g., triangle are no longer smooth.
But they can still be manifold:
- two triangles per edge (no “fins”)
- every vertex looks like a “fan”

Why? Simplicity.
- no special cases to handle
- keeps data structures (reasonably) simple)

18

NO

YES

NO

YES

 CMU 15-462/662, Spring 2016

What about boundary?
The boundary is where the surface “ends.”
E.g., waist & ankles on a pair of pants.
Locally, looks like a half disk
Globally, each boundary forms a loop

Triangle mesh:
- one triangle per boundary edge
- boundary vertex looks like “pacman”

19

YES

 CMU 15-462/662, Spring 2016

Anatomy of a manifold (in 2D and 3D)

20

 CMU 15-462/662, Spring 2016

What can we measure about vectors?

21

 CMU 15-462/662, Spring 2016

What can we measure about vectors?

22

 CMU 15-462/662, Spring 2016

Inner product of tangent vectors is

23

metric
(“first fundamental form”)

 CMU 15-462/662, Spring 2016

Q: What’s the length of a tangent vector?

24

 CMU 15-462/662, Spring 2016

Normal is vector orthogonal to all tangents

25

 CMU 15-462/662, Spring 2016

Which direction does the normal point?

26

orientable nonorientable

 CMU 15-462/662, Spring 2016

Curvature is change in normal

27

 CMU 15-462/662, Spring 2016

Standard definition: radius of curvature

28

curvature

 CMU 15-462/662, Spring 2016

Alternative: normals as map to unit circle

29

Key idea: size of swept-out piece gives total curvature.

 CMU 15-462/662, Spring 2016

Discrete curvature as change in normal

30

Radius of curvature no longer makes sense!

...can still talk about change in normal.

 CMU 15-462/662, Spring 2016

What about surfaces?

31

 CMU 15-462/662, Spring 2016

Normal is now map to the sphere

32

shape operatorGauss map

 CMU 15-462/662, Spring 2016

Normal curvature

33

(“second fundamental form”)

 CMU 15-462/662, Spring 2016

Principal Curvatures

34
Fact: principal curvature directions are orthogonal.

principal curvature

 CMU 15-462/662, Spring 2016

Q: What are the principal curvatures?

35

 CMU 15-462/662, Spring 2016

Mean & Gaussian Curvature

36
developable

minimal

Gaussian

mean

 CMU 15-462/662, Spring 2016

Discrete Gaussian Curvature?
Once again, use area on Gauss sphere:

37

A lot can be done with this representation!
See http://keenan.is/dgpdec for more.

http://keenan.is/dgpdec

 CMU 15-462/662, Spring 2016

How do we actually encode all this data?

38

 CMU 15-462/662, Spring 2016

Warm up: arrays vs. linked lists

Want to store a list of numbers

One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?

A: For one, we can easily insert numbers wherever we like...

39

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1

 CMU 15-462/662, Spring 2016

Polygon soup, revisited
Store triples of coordinates (x,y,z) and indices (i,j,k)
E.g., tetrahedron:

40

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

TRIANGLES

Q: How do we find all the triangles touching vertex 2?
Ok, now consider a more complicated mesh:

Very expensive to find the neighboring triangles! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662, Spring 2016

Alternative: Incidence Matrices
If we want to answer neighborhood queries, why not simply store
a list of neighbors?

Can encode all neighbor information via incidence matrices
E.g., tetrahedron:

1 means “touches”; 0 means “does not touch”
For large meshes, most entries will be zero!

Can dramatically reduce storage cost using sparse matrices

Still large storage cost, but finding neighbors is now O(1)
(Bonus feature: mesh does not have to be manifold)

41

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

42

Store some information about neighbors

Don’t need an exhaustive list; just a few key pointers

Key idea: two halfedges act as “glue” between mesh elements:

Each vertex, edge, and face points to just one of its halfedges.

 CMU 15-462/662, Spring 2016

Alternative: Halfedge Data Structure

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

43

Use “twin” and “next” pointers to move around mesh
Use “vertex”, “edge”, and “face” pointers to grab element
Example: visit all vertices of a face:

Example: visit all neighbors of a vertex:

Note: only makes sense if mesh is manifold!
 CMU 15-462/662, Spring 2016

Halfedge makes mesh traversal easy

h
a
l
f
e
d
g
e

next

next

Face

Halfedge* h = f->halfedge;
do {
 h = h->next;
}
while(h != f->halfedge);

h
a
l
f
e
d
g
e

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

 CMU 15-462/662, Spring 2016

Halfedge also easy to edit
Remember key feature of linked list: insert/delete elements

Same story with halfedge mesh (“linked list on steroids”)

Several atomic operations for triangle meshes:

How? Allocate/delete elements; reassigning pointers.

(Should be careful to preserve manifoldness!)

44

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

 CMU 15-462/662, Spring 2016

Edge Flip
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

Long list of pointer reassignments (edge->halfedge = ...)

However, no elements created/destroyed.
Q: What happens if we flip twice?
(Challenge: can you implement edge flip such that pointers
are unchanged after two flips?)

45

b

c

a d

b

c

a d

flip

 CMU 15-462/662, Spring 2016

Edge Split
Insert midpoint m of edge (c,b), connect to get four
triangles:

This time, have to add new elements.
Lots of pointer reassignments.
Q: Can we “reverse” this operation?

46

b

m

c

a d

b

c

a d

split

 CMU 15-462/662, Spring 2016

Edge Collapse
Replace edge (b,c) with a single vertex m:

Now have to delete elements.
Still lots of pointer assignments!
Q: How would we implement this with a polygon soup?
Any other good way to do it? (E.g., different data
structure?)

47

a

b

c d

a

b

m

collapse

48

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHosMany very similar data structures:

- winged edge
- corner table
- quadedge
- ...
Each stores local neighborhood information
Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access
- PROS: better access time for individual elements,

intuitive traversal of local neighborhoods
(Food for thought: can you design a halfedge-like data
structure with reasonably coherent data storage?)

 CMU 15-462/662, Spring 2016

Alternatives to Halfedge

 CMU 15-462/662, Spring 2016

Ok, but what can we actually do with our
fancy new data structure?

49

 CMU 15-462/662, Spring 2016

Remeshing as resampling
Remember our discussion of aliasing

Bad sampling makes signal appear different than it really is

E.g., undersampled curve looks flat
Geometry is no different!

- undersampling destroys features

- oversampling destroys performance
How do we resample a geometric signal?

50

51

Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling:

Still need to intelligently decide which edges to modify!
b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

 CMU 15-462/662, Spring 2016

Already know how to resample!

 CMU 15-462/662, Spring 2016

What makes a “good” geometric signal?
One rule of thumb: triangle shape

52

“GOOD” “BAD”

More specific condition: Delaunay
“Circumcircle interiors contain no vertices.”
 Not always a good condition, but often*.

*See Shewchuk, “What is a Good Linear Element”

53

Already have a good tool: edge flips!
If α+β > π, flip it!

FACT: in 2D, flipping edges eventually yields Delaunay
mesh
Theory: worst case O(n2); no longer true for surfaces in 3D.
Practice: simple, effective way to improve mesh quality

 CMU 15-462/662, Spring 2016

How do we make a mesh “more Delaunay”?

 CMU 15-462/662, Spring 2016

How do we make a triangles “more round”?
Delaunay doesn’t mean triangles are “round” (angles near
60°)

54

average

Simple version of technique called “Laplacian smoothing”.*

*See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/dgpdec

 CMU 15-462/662, Spring 2016

Combine Smoothing + Refinement
Current best techniques do both

55

 CMU 15-462/662, Spring 2016

What else makes a “good” geometric signal?
Good approximation of original signal!
Keep only elements that contribute information about
shape.
- simplification (e.g., quadric error metric)
Add additional information where curvature is large.
- subdivision (e.g., Loop, Catmull-Clark, etc.)
Will see more of this in your assignment...!

56

 CMU 15-462/662, Spring 2016

What you should know:
How to use split and average operations to do subdivision

What is a manifold surface?

Distinguish manifold from non-manifold surfaces

Can a manifold surface have a boundary? Give an example.

Explain the idea of surface curvature with a diagram.

Give an example of a surface where one of the principal curvatures is zero

What do you need to store in a halfedge data structure?

How can you find all vertices in a face with this data structure?

How can you find all faces that contain a vertex with this data structure?

Be able to perform edge flips, edge splits, and edge collapse with this data
structure.

BONUS: Think of an algorithm to traverse every face in a manifold using this
data structure.

57

