
Computer Graphics 
CMU 15-462/15-662, Spring 2016

Lecture 10:

Curves, Surfaces & Meshes
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Assignment 2 is out!
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Last time: overview of geometry
Many types of geometry in nature 

Demand sophisticated representations 

Two major categories: 

- IMPLICIT - “tests” if a point is in shape 

- EXPLICIT - directly “lists” points 

Lots of representations for both 

Today: 

- subdivision curves and surfaces (explicit) 

- what is a surface, anyway? 

- nuts & bolts of polygon meshes 

- geometry processing / resampling
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Geometry
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Subdivision (Explicit)
Alternative starting point for B-spline curves: subdivision 
Start with control curve 
Insert new vertex at each edge midpoint 
Update vertex positions according to fixed rule 
For careful choice of averaging rule, yields smooth curve 
- Average with “next” neighbor (Chaikin): quadratic B-

spline 

4Slide cribbed from Don Fussell.
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Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”) 

Subdivide each element 

Update vertices via local averaging 
Many possible rule: 

- Catmull-Clark (quads) 

- Loop (triangles) 

- ... 

Common issues: 

- interpolating or approximating? 

- continuity at vertices? 

Easier than NURBS for modeling; harder to guarantee continuity
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Subdivision in Action (Pixar’s “Geri’s Game”)
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Q: What is a “surface?”
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A: Oh, it’s a 2-dimensional manifold.
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Q: Ok... but what the heck is a manifold?
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The Earth looks flat, if you get close enough
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Can pretend we’re on a grid:
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The Earth looks flat, if you get close enough
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Can pretend we’re on a grid:

Much harder to describe!
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A smooth manifold also looks flat close up
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Not all curves are smooth manifolds
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No matter how close we get, doesn’t look like a single line!
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What about sharp corners?
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Can easily be flattened into a line.
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Can still assign coordinates (just like Manhattan!)

...But is it a manifold?
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“A subset S of Rm is an n-manifold if every point p in S is 
contained in a neighborhood that can be mapped 
bijectively and continuously (both ways) to the open ball in 
Rn.” 
In other words: each little piece can be made flat without 
“ripping or poking holes.”
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Definition of a manifold
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Why is the manifold property valuable?
Makes life simple: all surfaces look the same (at least 
locally). 
Gives us coordinates!  (At least locally.)

16

More abstractly, lets us talk about curved surfaces in terms of 
familiar tools: vector calculus & linear algebra.



 CMU 15-462/662, Spring 2016

Isn’t every shape manifold?
No, for instance:
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No way to put a (simple) coordinate system on the center point!
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What about discrete surfaces?
Surfaces made of, e.g., triangle are no longer smooth. 
But they can still be manifold: 
- two triangles per edge (no “fins”) 
- every vertex looks like a “fan” 

Why? Simplicity. 
- no special cases to handle 
- keeps data structures (reasonably) simple)
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist & ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Triangle mesh: 
- one triangle per boundary edge 
- boundary vertex looks like “pacman”

19

YES



 CMU 15-462/662, Spring 2016

Anatomy of a manifold (in 2D and 3D)
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What can we measure about vectors?
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What can we measure about vectors?
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Inner product of tangent vectors is 
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metric
(“first fundamental form”)
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Q: What’s the length of a tangent vector?
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Normal is vector orthogonal to all tangents
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Which direction does the normal point?
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orientable nonorientable
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Curvature is change in normal
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Standard definition: radius of curvature
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curvature
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Alternative: normals as map to unit circle
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Key idea: size of swept-out piece gives total curvature.



 CMU 15-462/662, Spring 2016

Discrete curvature as change in normal
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Radius of curvature no longer makes sense!

...can still talk about change in normal.
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What about surfaces?
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Normal is now map to the sphere
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shape operatorGauss map
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Normal curvature
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(“second fundamental form”)
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Principal Curvatures

34
Fact: principal curvature directions are orthogonal.

principal curvature
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Q: What are the principal curvatures?
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Mean & Gaussian Curvature
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Discrete Gaussian Curvature?
Once again, use area on Gauss sphere:
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A lot can be done with this representation!   
See http://keenan.is/dgpdec for more.

http://keenan.is/dgpdec
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How do we actually encode all this data?
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Warm up: arrays vs. linked lists

Want to store a list of numbers 

One idea: use an array (constant time lookup, coherent access) 

Alternative: use a linked list (linear lookup, incoherent access) 

Q: Why bother with the linked list? 

A: For one, we can easily insert numbers wherever we like...
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Polygon soup, revisited
Store triples of coordinates (x,y,z) and indices (i,j,k) 
E.g., tetrahedron:
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0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Q: How do we find all the triangles touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring triangles!  (What’s the cost?) 

~1 billion polygons
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Alternative: Incidence Matrices
If we want to answer neighborhood queries, why not simply store 
a list of neighbors? 

Can encode all neighbor information via incidence matrices 
E.g., tetrahedron: 

1 means “touches”; 0 means “does not touch” 
For large meshes, most entries will be zero! 

Can dramatically reduce storage cost using sparse matrices 

Still large storage cost, but finding neighbors is now O(1) 
(Bonus feature: mesh does not have to be manifold)
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e2

v0

v1

v2

v3

e0

e1

e3
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f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE
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Store some information about neighbors 

Don’t need an exhaustive list; just a few key pointers 

Key idea: two halfedges act as “glue” between mesh elements: 

Each vertex, edge, and face points to just one of its halfedges.
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Alternative: Halfedge Data Structure

Ha
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ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face
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Use “twin” and “next” pointers to move around mesh 
Use “vertex”, “edge”, and “face” pointers to grab element 
Example: visit all vertices of a face: 

Example: visit all neighbors of a vertex: 

Note: only makes sense if mesh is manifold!
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Halfedge makes mesh traversal easy

h
a
l
f
e
d
g
e

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
}
while( h != f->halfedge );

h
a
l
f
e
d
g
e

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge also easy to edit
Remember key feature of linked list: insert/delete elements 

Same story with halfedge mesh (“linked list on steroids”) 

Several atomic operations for triangle meshes: 

How?  Allocate/delete elements; reassigning pointers. 

(Should be careful to preserve manifoldness!)
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Edge Flip
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d): 

Long list of pointer reassignments (edge->halfedge = ...) 

However, no elements created/destroyed. 
Q: What happens if we flip twice? 
(Challenge: can you implement edge flip such that pointers 
are unchanged after two flips?)
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Edge Split
Insert midpoint m of edge (c,b), connect to get four 
triangles: 

This time, have to add new elements. 
Lots of pointer reassignments. 
Q: Can we “reverse” this operation?
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Edge Collapse
Replace edge (b,c) with a single vertex m: 

Now have to delete elements. 
Still lots of pointer assignments! 
Q: How would we implement this with a polygon soup? 
Any other good way to do it?  (E.g., different data 
structure?)
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Paul Heckbert (former CMU prof.) 
quadedge code - http://bit.ly/1QZLHosMany very similar data structures: 

- winged edge 
- corner table 
- quadedge 
- ... 
Each stores local neighborhood information 
Similar tradeoffs relative to simple polygon list: 
- CONS: additional storage, incoherent memory access 
- PROS: better access time for individual elements, 

intuitive traversal of local neighborhoods 
(Food for thought: can you design a halfedge-like data 
structure with reasonably coherent data storage?)
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Alternatives to Halfedge
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Ok, but what can we actually do with our 
fancy new data structure?
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Remeshing as resampling
Remember our discussion of aliasing 

Bad sampling makes signal appear different than it really is 

E.g., undersampled curve looks flat 
Geometry is no different! 

- undersampling destroys features 

- oversampling destroys performance 
How do we resample a geometric signal?

50



51

Edge split is (local) upsampling: 

Edge collapse is (local) downsampling: 

Edge flip is (local) resampling: 

Still need to intelligently decide which edges to modify!
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Already know how to resample!
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What makes a “good” geometric signal?
One rule of thumb: triangle shape
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“GOOD” “BAD”

More specific condition: Delaunay 
“Circumcircle interiors contain no vertices.” 
 Not always a good condition, but often*.

*See Shewchuk, “What is a Good Linear Element”
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Already have a good tool: edge flips! 
If α+β > π, flip it! 

FACT: in 2D, flipping edges eventually yields Delaunay 
mesh 
Theory: worst case O(n2); no longer true for surfaces in 3D. 
Practice: simple, effective way to improve mesh quality
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How do we make a mesh “more Delaunay”?
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How do we make a triangles “more round”?
Delaunay doesn’t mean triangles are “round” (angles near 
60°) 
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average

Simple version of technique called “Laplacian smoothing”.*

*See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/dgpdec



 CMU 15-462/662, Spring 2016

Combine Smoothing + Refinement
Current best techniques do both
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What else makes a “good” geometric signal?
Good approximation of original signal! 
Keep only elements that contribute information about 
shape. 
- simplification (e.g., quadric error metric) 
Add additional information where curvature is large. 
- subdivision (e.g., Loop, Catmull-Clark, etc.) 
Will see more of this in your assignment...!
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What you should know:
How to use split and average operations to do subdivision 

What is a manifold surface? 

Distinguish manifold from non-manifold surfaces 

Can a manifold surface have a boundary?   Give an example. 

Explain the idea of surface curvature with a diagram. 

Give an example of a surface where one of the principal curvatures is zero 

What do you need to store in a halfedge data structure? 

How can you find all vertices in a face with this data structure? 

How can you find all faces that contain a vertex with this data structure? 

Be able to perform edge flips, edge splits, and edge collapse with this data 
structure. 

BONUS:   Think of an algorithm to traverse every face in a manifold using this 
data structure.
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