Lecture 10:

Curves, Surfaces & Meshes

Computer Graphics
CMU 15-462/15-662, Spring 2016

Assignment 2 is out!

y t .4'.' 1
‘.‘k\ “ht_ 2 - >]
r ~ T P T o i » S
' ' > w S »7
o o SRR ;

M
u
.

HALFEDGE DATA

address JTA4n1393358

twing) s OxJTS4n139211T0
nexti) Ux7 41393230
Yertex|) ¢ OxTosdalicedo
edge !) Ux 714030284790

facel) ¢ Ox7104a3340700

1sBourndary!

vertex

CMU 15-462/662, Spring 2016

Last time: overview of geometry

m Many types of geometry in nature

m Demand sophisticated representations

m Two major categories:

IMPLICIT - “tests” if a point is in shape
EXPLICIT - directly “lists” points

m Lots of representations for both

m Today:

subdivision curves and surfaces (explicit)
what is a surface, anyway?
nuts & bolts of polygon meshes

geometry processing / resampling

Geometry

(MU 15-462/662, Spring 2016

Subdivision (Explicit)

m Alternative starting point for B-spline curves: subdivision

m Start with control curve

m Insert new vertex at each edge midpoint

m Update vertex positions according to fixed rule

m For careful choice of averaging rule, yields smooth curve
- Average with “next” neighbor (Chaikin): quadratic B-

spline
“ / N I > _ r“\ - < ~\
~‘ < | \ f o\ \ (
| \»_ \\ T __}\ ' i \‘-. ’} } “ \\—g\
o ' TN
7 N I I\

il cldod 6 berra kP 4

Subdivision Surfaces (Explicit)

m Start with coarse polygon mesh (“control cage”)
m Subdivide each element
m Update vertices via local averaging
m Many possible rule:
- (Catmull-Clark (quads)
- Loop (triangles)
m Common issues:
- interpolating or approximating?
- continuity at vertices?
m Easier than NURBS for modeling; harder to guarantee continuity

CMU 15-462/662, Spring 2016 5

Subdivision in Action (Pixar’s “Geri’s Game”")

CMU 15-462/662, Spring 2016

Q: What is a “surface?”

7 CMU 15-462/662, Spring 2016

A: Oh, it’s a 2-dimensional manifold.

8 CMU 15-462/662, Spring 2016

Q: Ok... but what the heck is a manifold?

The Earth looks flat, if you get close enough

°T"l’ '.\'q:‘v-,»::-.y‘r_ K . M\“ v«rh‘b" :-:f: 0... .
"? P "‘ >3 5 '0._ ' - »
r.i) ex'

(MU 15-462/662, Spring 2016

The Earth looks flat, if you get close enough

))))

......

Much harder t.o'describe! ‘ Lot

3 CMU 15-462/662, Spring 2016

A smooth manifold also looks flat close up

h

12 CMU 15-462/662, Spring 2016

Not all curves are smooth manifolds

-

N

No matter how close we get, doesn’t look like a single line!

13 CMU 15-462/662, Spring 2016

What about sharp corners?

012345678910 11 12 13

Can easily be flattened into a line.
Can still assign coordinates (just like Manhattan!)

...But is it a manifold?

14 CMU 15-462/662, Spring 2016

Definition of a manifold

m “Asubset S of R™is an n-manifold if every point pin Sis
contained in a neighborhood that can be mapped

RE‘jgctively and continuously (both ways) to tﬁe open bhall in

m In other words: each little piece can be mad
“ripping or poking holes.”

at without
NO

(MU 15-462/662, Spring 2016

Why is the manifold property valuable?

m Makes life simple: all surfaces look the same (at least
locally).

m Gives uscoordinates! (At least locally.)
v

m More abstractly, lets us talk about curved surfaces in terms of
familiar tools: vector calculus & linear algebra.

CMU 15-462/662, Spring 2016

Isn’t every shape manifold?

m No, for instance:

No way to put a (simple) coordinate system on the center point!

17 CMU 15-462/662, Spring 2016

What about discrete surfaces?

m Surfaces made of, e.q., triangle are no longer smooth.
m But they can still be manifold:
- two triangles per edge (no “fins”)

- every vertex looks like a “fan”

YES YES

m Why? Simplicity.

- nho special cases to handle
- keeps data structures (reasonably) simple)

18 CMU 15-462/662, Spring 2016

What about boundary?

m The boundary is where the surface “ends.”

m E.g., waist & ankles on a pair of pants.
m Locally, looks like a half disk
m Globally, each boundary forms a loop

V

m Triangle mesh:)
- one triangle per boundary edge
- boundary vertex looks like “pacman”

19 CMU 15-462/662, Spring 2016

Anatomy of a manifold (in 2D and 3D)

What can we measure about vectors?

v e

U

u - v = |ul|v|cosf

What can we measure about vectors?

Inner product of tangent vectors is

metric
(“first fundamental form”)

Q: What's the length of a tangent vector?

X| = Vf (X) - df (X)

Normal is vector orthogonal to all tangents

N
N-df(X)=0 VX

Which direction does the normal point?
N| =1
N-df(X)=0 VX

orientable nonorientable

26 CMU 15-462/662, Spring 2016

Curvature is change in normal

\ S| |

27 CMU 15-462/662, Spring 2016

Standard definition: radius of curvature

28 CMU 15-462/662, Spring 2016

Alternative: normals as map to unit circle

L

AN (X)
N
O
1/

Key idea: size of swept-out piece gives total curvature.

dy(X)

29 CMU 15-462/662, Spring 2016

Discrete curvature as change in normal
...can still talk about change in normal.

v

R

Radius of curvature no longer\makes sense!

30 CMU 15-462/662, Spring 2016

What about surfaces?

(MU 15-462/662, Spring 2016

Normal is now map to the sphere

Gauss map

32 CMU 15-462/662, Spring 2016

Normal curvature
i (X) = —df (X)) - dN(X)
—df (X) - dN(Y')

(“second fundamental form”)

df (X))

N

Principal Curvatures

principal curvature
AN (X;) =(kyf (X;)

Fact: principal curvature directions are orthogonal.

34 CMU 15-462/662, Spring 2016

Q: What are the principal curvatures?

/

— |- L - _
l

4
-
DO
1
|
/

N
=5
/ \

CMU 15-462/662, Spring 2016

Mean & Gaussian Curvature

Discrete Gaussian Curvature?

m Once again, use area on Gauss sphere:

@
&

A lot can be done with this representation!
See http://keenan.is/dgpdec for more.

37 CMU 15-462/662, Spring 2016

http://keenan.is/dgpdec

How do we actually encode all this data?

38 CMU 15-462/662, Spring 2016

Warm up: arrays vs. linked lists

m Want to store a list of numbers
m Oneidea: use an array (constant time lookup, coherent access)

‘ 1.7 ‘ 2.9 ‘ 0.3 ‘ 7.5 ‘ 9.2 ‘ 4.8 ‘ 6.0 ‘ 0.1

m Alternative: use a linked list (linear lookup, incoherent access)

o EE
- B

m Q: Why bother with the linked list?

m A:Forone, we can easily insert numbers wherever we like...

39 CMU 15-462/662, Spring 2016

Polygon soup, revisited

m Store triples of coordinates (x,y,z) and indices (i,j,k
m E.g., tetrahedron: VERTICES TRIANGLES

X Y =z i j k
O: -1 -1 -1 0 2 1
1: 1 -1 1 0 3 2 } 2
2: 1 1 -1 3 0 1 0
3: -1 1 1 3 1 2

m Q: How do we find all the triangles touching vertex 2?
m Ok, now consider a more complicated mesh: .
~1 billion polygons

'“n"w i]Ln

Very expensive to find the nelghbormg trlangles' (What S the cost’)

(MU 15-462/662, Spring 2016

Alternative: Incidence Matrices

If we want to answer neighborhood queries, why not simply store
a list of neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron: yicprey o Epge EDGE « FACE
vO vl v2 v3 el el e2 e3 e4d eb5
e01 1 0 O f01 0 0 1 0 1 e
el 0 1 1 O £1 0 1 0 0 1 1
e21 0 1 0 £2 1 1 1 0 0 O
e3 1 0 0 1 £3 0 0 1 1 1 o0
ed 0 0O 1 1
e5 0 1 0 1

/|

1 means “touches”: 0 means “does not touch”

For large meshes, most entries will be zero! v

Can dramatically reduce storage cost using sparse matrices’
Still large storage cost, but finding neighbors is now 0(1)
(Bonus feature: mesh does not have to be manifold)

41 CMU 15-462/662, Spring 2016

Alternative: Halfedge Data Structure

m Store some information about neighbors
m Don’t need an exhaustive list; just a few key pointers
m Keyidea: two halfedges act as “glue” between mesh elements:

struct Halfedge A
{ @ struct Edge
Halfedge* twin; o o ¢
o 0
SRR EET R H I3 Halfedge* halfedge;
Vertex* vertex; o }; struct Face
Edge* edge; {
Face* face; Halfedge* halfedge;
L& next o) bi
I o
Q %’ twin
face a1 o
o
aw
halfedge
vertex
struct Vertex
vertex {

Halfedge* halfedge;
}i

m Each vertex, edge, and face points to just one of its halfedges.

42 CMU 15-462/662, Spring 2016

Halfedge makes mesh traversal easy

m Use“twin” and “next” pointers to move around mesh

/]|

m Use “vertex’, “edge’, and “face” pointers to grab element
m Example: visit all vertices of a face:

Halfedge* h = f->halfedge;
do {
h = h->next;

halfedge \

}
while(h != f->halfedge);

m Example: visit all neighbors of a vertex:

next
Halfedge* h = v->halfedge; '//////.>

dO { twin

h = h->twin->next; vertex \\<fi*

while(h != v->halfedge);

halfedge \

m Note: only makes sense if mesh is manifold!

43 CMU 15-462/662, Spring 2016

Halfedge also easy to edit

m Remember key feature of linked list: insert/delete elements

Same story with halfedge mesh (“linked list on steroids”)

Several atomic operations for triangle meshes:

b
a
/\/\/\ collapse
c d

NAVANY

How? Allocate/delete elements; reassigning pointers.

(Should be careful to preserve manifoldness!)

44

Y
<

CMU 15-462/662, Spring 2016

Edge Flip

m Triangles (a,b,¢), (b,d,c) become (a,d,c), (a,b,d):

flip
a d a d
b b
m Long list of pointer reassignments (eage->halfedge = ...)

m However, no elements created/destroyed.
m Q: What happens if we flip twice?

m (Challenge: can you implement edge flip such that pointers
are unchanged after two flips?)

45 CMU 15-462/662, Spring 2016

Edge Split

m Insert midpoint m of edge (¢,b), connect to get four
triangles:

C C

split

m This time, have to add new elements.
m Lots of pointer reassignments.
m Q: Can we “reverse” this operation?

46 CMU 15-462/662, Spring 2016

Edge Collapse

m Replace edge (b,c) with a single vertex m:

a a

' collapse
m

Cvd
b b

m Now have to delete elements.

m Still lots of pointer assignments!
m Q: How would we implement this with a polygon soup?

m Any other good way to do it? (E.g., different data
structure??

47 CMU 15-462/662, Spring 2016

Alternatives to Halfedge

Paul Heckbert (former CMU prof.)

¢ o quadedge code - http://bit.ly/1QZLHos
m Many very similar data structures: et

- winged edge
- corner table

- quadedge

ket s et

m Each stores local neighborhood information
m Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements,
intuitive traversal of local neighborhoods

m (Food for thought: can you design a halfedge-like data
structure with reasonably coherent data storage?)

48 CMU 15-462/662, Spring 2016

Ok, but what can we actually do with our
fancy new data structure?

49

Remeshing as resampling

m Remember our discussion of aliasing
m Bad sampling makes signal appear different than it really is

fix)

m E.g., undersampled curve looks flat
m Geometry is no different!
- undersampling destroys features g
- oversampling destroys performance -
m How do we resample a geometric signal?

\ \ } ‘\ . .‘\ D - g
| e % [y g
.J | R .',‘."

. "'J

>0 CMU 15-462/662, Spring 2016

Already know how to resample!

m Edge split is (local) upsampling: i _m— C

m Edge collapse is (local) downsampling:

M/\ collapse
\W
b

m Edge flip is (local) resampling:

o flip C
/ N
a d a d
b b

m Still need to intelligently decide which edges to modify!

> CMU 15-462/662, Spring 2016

What makes a “good” geometric signal?

m One rule of thumb: triangle shape

IIGOODII IIBADII

m More specific condition: Delaunay

n

m “Circumcircle interiors contain no vertices.
m Notalways a good condition, but often®.

*See Shewchuk, “What is a Good Linear Element”
52 CMU 15-462/662, Spring 2016

How do we make a mesh “more Delaunay™?

m Already have a good tool: edge flips!
m fa+Pf >, flipit!

m FACTI; in 2D, flipping edges eventually yields Delaunay
mes

m Theory: worst case 0(n2); no longer true for surfaces in 3D.
m Practice: simple, effective way to improve mesh quality

>3 CMU 15-462/662, Spring 2016

How do we make a triangles “more round”?

m 6Dg(l))aunay doesn’t mean triangles are “round” (angles near

average
M

m Simple version of technique called “Laplacian smoothing”.*

*See Crane, “Digital Geometry Processing with Discrete Exteriog Zfalculus” http://keenan.is/dgpdec

CMU 15-462/662, Spring 2016

Combine Smoothing + Refinement

(MU 15-462/662, Spring 2016

m Current best techniques do both

What else makes a “good” geometric signal?

m Good approximation of original signal!

= Kﬁep only elements that contribute information about
shape.

- simplification (e.g., quadric error metric)

m Add additional information where curvature is large.
- subdivision (e.g., Loop, Catmull-Clark, etc.)

m Will see more of this in your assignment...!

>6 CMU 15-462/662, Spring 2016

What you should know:

How to use split and average operations to do subdivision

What is a manifold surface?

Distinguish manifold from non-manifold surfaces

Can a manifold surface have a boundary? Give an example.

Explain the idea of surface curvature with a diagram.

Give an example of a surface where one of the principal curvatures is zero
What do you need to store in a halfedge data structure?

How can you find all vertices in a face with this data structure?

How can you find all faces that contain a vertex with this data structure?

Be able to perform edge flips, edge splits, and edge collapse with this data
structure.

BONUS: Think of an algorithm to traverse every face in a manifold using this
data structure.

>/ CMU 15-462/662, Spring 2016

